期刊文献+

Toughening of Immiscible rPS/SAN Blends by SEBS Elastomers: Properties and Morphology

Toughening of Immiscible rPS/SAN Blends by SEBS Elastomers: Properties and Morphology
下载PDF
导出
摘要 In this research, an attempt was made to improve compatibility in a polymer blend composed of incompatible constituents, namely, recycled polystyrene (rPS) and polystyrene-co-acrylonitrile (SAN), through the addition of a compatibilizer. The compatibilizing agent, styrene-ethylenebutadiene-styrene block copolymer (SEBS), was added to the polymer blend in ratios of 5 and 10 wt%. For this purpose, blends of rPS and SAN at different ratios, without and with varying concentrations of compatibilizer, were prepared by melt blending using a co-rotating twin-screwextruder. Mechanical properties including tensile and impact strength, rheological properties (RPA), thermal behaviour (DSC) and morphological characteristics (SEM) were evaluated. According to the results obtained by complex viscosity, the blends behave as a pseudoplastic fluid. The results showed that the addition of SEBS increased the Izod impact strength and the elongation at break and decreased the tensile strength and tensile modulus. rPS/SAN blend modified with SEBS had better mechanical properties than the rPS/SAN alloy. SEM photographs revealed that the SEBS was not only distributed in the SAN phase but also distributed in rPS phase in rPS/SAN/SEBS blend. Furthermore, DSC analysis for blends of rPS/SAN gave a good indication of the improvement on miscibility for most compositions. SEM micrographs of tensile fracture surfaces indicated that the formation of the co-continuous phase and the improvement of interface adhesion are the most important reasons for the excellent tensile properties of the rPS/SAN/SEBS blends. Within the range of analysed compositions, the morphologies investigated by SEM are typical of immiscible blends. In this research, an attempt was made to improve compatibility in a polymer blend composed of incompatible constituents, namely, recycled polystyrene (rPS) and polystyrene-co-acrylonitrile (SAN), through the addition of a compatibilizer. The compatibilizing agent, styrene-ethylenebutadiene-styrene block copolymer (SEBS), was added to the polymer blend in ratios of 5 and 10 wt%. For this purpose, blends of rPS and SAN at different ratios, without and with varying concentrations of compatibilizer, were prepared by melt blending using a co-rotating twin-screwextruder. Mechanical properties including tensile and impact strength, rheological properties (RPA), thermal behaviour (DSC) and morphological characteristics (SEM) were evaluated. According to the results obtained by complex viscosity, the blends behave as a pseudoplastic fluid. The results showed that the addition of SEBS increased the Izod impact strength and the elongation at break and decreased the tensile strength and tensile modulus. rPS/SAN blend modified with SEBS had better mechanical properties than the rPS/SAN alloy. SEM photographs revealed that the SEBS was not only distributed in the SAN phase but also distributed in rPS phase in rPS/SAN/SEBS blend. Furthermore, DSC analysis for blends of rPS/SAN gave a good indication of the improvement on miscibility for most compositions. SEM micrographs of tensile fracture surfaces indicated that the formation of the co-continuous phase and the improvement of interface adhesion are the most important reasons for the excellent tensile properties of the rPS/SAN/SEBS blends. Within the range of analysed compositions, the morphologies investigated by SEM are typical of immiscible blends.
作者 Khaled Bedjaoui Rodrigo Navarro Rachida Krache Juan Lopez Valentin Rebeca Herrero Calderon Alberto Fernandez Torres Angel Marcos Fernandez Khaled Bedjaoui;Rodrigo Navarro;Rachida Krache;Juan Lopez Valentin;Rebeca Herrero Calderon;Alberto Fernandez Torres;Angel Marcos Fernandez(Laboratory Multiphas Polymeric Materials (LMPMP), Faculty of Technology, University Ferhat Abbas Setif-1, Setif, Algerie;Instituto de Ciencia y Tecnologia de Polimeros (CSIC), Department of Fisica de Polimeros, Elastomeros y Aplicaciones Energeticas, Madrid, Spain)
出处 《Journal of Materials Science and Chemical Engineering》 2022年第3期42-62,共21页 材料科学与化学工程(英文)
关键词 Recycled Polystyrene SAN TOUGHENING Polymer Blends RHEOLOGY Recycled Polystyrene SAN Toughening Polymer Blends Rheology
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部