期刊文献+

UV-LED Curing Cationic Passivation Film for the Surface of Hot-Dip Aluminum-Zinc Coated Steel Plate

UV-LED Curing Cationic Passivation Film for the Surface of Hot-Dip Aluminum-Zinc Coated Steel Plate
下载PDF
导出
摘要 The surface treatment technology of hot aluminum-zinc steel plate and UV curing technology may be effectively combined in the present research. According to different light curing mechanisms, different formulations from UV curing surface treatment agents can be applied to the surface treatment of hot aluminum-zinc steel plate, mainly including 3-ethyl-3-benzoxy-methyl oxacyclobutane (TCM 104) and 3,4-epoxy-cyclohexylformic acid -3',4'-epoxy-cyclohexyl methyl ester (UVR 6110) as active diluents, high molecular weight polyfunctional oxacyclobutane as oligomer, triaryl sulfonium salt as a cationic photoinitiator, and an anthracene compound as a sensitizer. 385 nm LED lamp used as a radiation resource, the effects of the proportion of active diluent, the type and amount of photoinitiator, the amount of sensitizer, the curing temperature, and the amount of nano-SiO<sub>2</sub> on the photocuring rate were investigated by photoper-scanning differential calorimetry (Photo-DSC). The experimental results show that the system has the fastest photocuring rate under the conditions of 8:2 ratio of TCM 104 to UVR 6110, 2.5% photoinitiator, 0.6% sensitizer, 0.2% nano-SiO<sub>2</sub> additive, and 80&#730;C curing temperature. Based on addition of the appropriate number of various additives, the cationic photocuring surface treatment solution was prepared and further coated on the hot-dip galvalume steel plates. After curing, the passivation films were characterized by neutral salt spray test (NSST), Fourier transform infrared spectroscopy (FT-IR), electrochemical testing and other methods. The results show that the formulations could be cured at an energy of 150 mJ/cm<sup>2</sup>, and the overall performance of the passivation film could meet with the requirements of the downstream users. The surface treatment technology of hot aluminum-zinc steel plate and UV curing technology may be effectively combined in the present research. According to different light curing mechanisms, different formulations from UV curing surface treatment agents can be applied to the surface treatment of hot aluminum-zinc steel plate, mainly including 3-ethyl-3-benzoxy-methyl oxacyclobutane (TCM 104) and 3,4-epoxy-cyclohexylformic acid -3',4'-epoxy-cyclohexyl methyl ester (UVR 6110) as active diluents, high molecular weight polyfunctional oxacyclobutane as oligomer, triaryl sulfonium salt as a cationic photoinitiator, and an anthracene compound as a sensitizer. 385 nm LED lamp used as a radiation resource, the effects of the proportion of active diluent, the type and amount of photoinitiator, the amount of sensitizer, the curing temperature, and the amount of nano-SiO<sub>2</sub> on the photocuring rate were investigated by photoper-scanning differential calorimetry (Photo-DSC). The experimental results show that the system has the fastest photocuring rate under the conditions of 8:2 ratio of TCM 104 to UVR 6110, 2.5% photoinitiator, 0.6% sensitizer, 0.2% nano-SiO<sub>2</sub> additive, and 80&#730;C curing temperature. Based on addition of the appropriate number of various additives, the cationic photocuring surface treatment solution was prepared and further coated on the hot-dip galvalume steel plates. After curing, the passivation films were characterized by neutral salt spray test (NSST), Fourier transform infrared spectroscopy (FT-IR), electrochemical testing and other methods. The results show that the formulations could be cured at an energy of 150 mJ/cm<sup>2</sup>, and the overall performance of the passivation film could meet with the requirements of the downstream users.
作者 Weixing Lu Linling Wu Chunyu Ma Qian-Feng Zhang Weixing Lu;Linling Wu;Chunyu Ma;Qian-Feng Zhang(Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma’anshan, China)
出处 《Journal of Materials Science and Chemical Engineering》 CAS 2022年第9期27-48,共22页 材料科学与化学工程(英文)
关键词 Cationic Photocuring Hot-Dip Galvalume Steel Plate Surface Treatment Corrosion Resistance Chromium Free Environmental Passivation Film Cationic Photocuring Hot-Dip Galvalume Steel Plate Surface Treatment Corrosion Resistance Chromium Free Environmental Passivation Film
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部