期刊文献+

Analysis of Tool Wear Rate in Drilling Operation using Scanning Electron Microscope (SEM)

Analysis of Tool Wear Rate in Drilling Operation using Scanning Electron Microscope (SEM)
下载PDF
导出
摘要 Hole making had long been recognized as the most prominent machining process, requiring specialized techniques to achieve optimum cutting condition. Drilling can be described as a process where a multi-point tool is used to remove unwanted materials to produce a desired hole. It broadly covers those methods used for producing cylindrical holes in the work piece. However, high production machining and drilling with high cutting velocity, feed and depth of cut is inherently associated with generation of large amount of heat and high cutting temperature. Such high cutting temperature not only reduces dimensional accuracy and tool life but also impairs the surface integrity of the product. In this case, high pressure coolant (HPC) is very effective to reduce temperature. When temperature is increased a large amount of tool wear appears at the drill bit. In this situation, high temperature either affects roundness of the hole or chip shape and color of chip. HPC is applied in the same direction as the drill bit. HPC has reduced temperature as well as improving roundness and also provide lubrication in the tool tip and surface interface. Hole making had long been recognized as the most prominent machining process, requiring specialized techniques to achieve optimum cutting condition. Drilling can be described as a process where a multi-point tool is used to remove unwanted materials to produce a desired hole. It broadly covers those methods used for producing cylindrical holes in the work piece. However, high production machining and drilling with high cutting velocity, feed and depth of cut is inherently associated with generation of large amount of heat and high cutting temperature. Such high cutting temperature not only reduces dimensional accuracy and tool life but also impairs the surface integrity of the product. In this case, high pressure coolant (HPC) is very effective to reduce temperature. When temperature is increased a large amount of tool wear appears at the drill bit. In this situation, high temperature either affects roundness of the hole or chip shape and color of chip. HPC is applied in the same direction as the drill bit. HPC has reduced temperature as well as improving roundness and also provide lubrication in the tool tip and surface interface.
作者 Anil Jindal
出处 《Journal of Minerals and Materials Characterization and Engineering》 2012年第1期43-54,共12页 矿物质和材料特性和工程(英文)
关键词 High-pressure COOLANT (HPC) DRILLING chip ROUNDNESS TAPER and TOOL wear. High-pressure coolant (HPC) drilling chip roundness taper and tool wear.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部