摘要
A new non linear optical material, Bis-Glycine Hydro bromide (BGHB), has been synthesized. Single crystals of BGHB have been grown successfully by slow evaporation method. The solubility of the material was measured in various solvents such as ethanol, acetone and water. It was found to have extremely low solubility in ethanol and acetone. The grown crystals were characterized by recording the powder diffraction and identifying the diffracting planes. Using single crystal diffractometer the morphology of BGHB crystal was identified. Fourier transform infrared (FTIR) spectroscopic studies, optical behavior such as UV-visible-NIR absorption, Thermogravimetic (TG) and differential scanning calorimetric (DSC) analyses have been performed to show that BGHB is thermally stable up to 168.5℃ and there is no phase transition and decomposition till 168.5℃. Anisotropy in the hardness behavior has been observed while measuring at different crystal planes by Vicker hardness test.
A new non linear optical material, Bis-Glycine Hydro bromide (BGHB), has been synthesized. Single crystals of BGHB have been grown successfully by slow evaporation method. The solubility of the material was measured in various solvents such as ethanol, acetone and water. It was found to have extremely low solubility in ethanol and acetone. The grown crystals were characterized by recording the powder diffraction and identifying the diffracting planes. Using single crystal diffractometer the morphology of BGHB crystal was identified. Fourier transform infrared (FTIR) spectroscopic studies, optical behavior such as UV-visible-NIR absorption, Thermogravimetic (TG) and differential scanning calorimetric (DSC) analyses have been performed to show that BGHB is thermally stable up to 168.5℃ and there is no phase transition and decomposition till 168.5℃. Anisotropy in the hardness behavior has been observed while measuring at different crystal planes by Vicker hardness test.