摘要
Beryl-Al6061 alloy composites having 2-12 wt% of beryl particles were fabricated by liquid metallurgy (stir cast) method. The tensile and wear properties of beryl-Al6061 composites have been evaluated and compared with its base alloy. The results revealed that the Al6061-10 wt% of beryl composites shows an improvement of 15.38% in tensile strength and specific wear rate decreases by 8.9% at normal load of 9.81N when compared to matrix i.e. base alloy. Significant improvement in tensile properties and hardness are noticed as the wt% of the beryl particles increases. The microstructures of the composites were studied to know the uniform dispersion of the beryl particles in matrix. It has been observed that addition of beryl particles significantly improves ultimate tensile strength and hardness properties as compared with that of unreinforced matrix.
Beryl-Al6061 alloy composites having 2-12 wt% of beryl particles were fabricated by liquid metallurgy (stir cast) method. The tensile and wear properties of beryl-Al6061 composites have been evaluated and compared with its base alloy. The results revealed that the Al6061-10 wt% of beryl composites shows an improvement of 15.38% in tensile strength and specific wear rate decreases by 8.9% at normal load of 9.81N when compared to matrix i.e. base alloy. Significant improvement in tensile properties and hardness are noticed as the wt% of the beryl particles increases. The microstructures of the composites were studied to know the uniform dispersion of the beryl particles in matrix. It has been observed that addition of beryl particles significantly improves ultimate tensile strength and hardness properties as compared with that of unreinforced matrix.