期刊文献+

Effect of Micro Size Cenosphere Particles Reinforcement on Tribological Characteristics of Vinylester Composites under Dry Sliding Conditions

Effect of Micro Size Cenosphere Particles Reinforcement on Tribological Characteristics of Vinylester Composites under Dry Sliding Conditions
下载PDF
导出
摘要 In this paper the friction and wear characteristics of vinylester and cenosphere reinforced vinylester composites have been investigated under dry sliding conditions, under different applied normal load and sliding speed. Wear tests were carried using pin on a rotating disc under ambient conditions. Tests were conducted at normal loads 10, 30, 50 and 70 N and under sliding velocity of 1.88, 3.14, 4.39 and 5.65 m/s. The results showed that the coefficient of friction decreases with the increase in applied normal load values under dry conditions. On the other hand for pure vinylester specific wear rate increases with increase in applied normal load. However the specific wear rate for 2%, 6%, 10% and 15% cenosphere reinforced vinylester composite decreases with the increase in applied normal load under dry conditions. The results showed that with increase in the applied normal load and sliding speed the coefficient of friction and spe- cific wear rate decreases under dry sliding conditions. It is also found that a thin film formed on the counterface seems to be effective in improving the tribological characteristics. The specific wear rates for pure vinylester and vinylester composite under dry sliding condition were in the order of 10-6 mm3/Nm. The results showed that the inclusion of cenosphere as filler materials in vinylester composites will increase the wear resistance of the composite significantly. SEM analysis has been carried to identify the wear mechanism. In this paper the friction and wear characteristics of vinylester and cenosphere reinforced vinylester composites have been investigated under dry sliding conditions, under different applied normal load and sliding speed. Wear tests were carried using pin on a rotating disc under ambient conditions. Tests were conducted at normal loads 10, 30, 50 and 70 N and under sliding velocity of 1.88, 3.14, 4.39 and 5.65 m/s. The results showed that the coefficient of friction decreases with the increase in applied normal load values under dry conditions. On the other hand for pure vinylester specific wear rate increases with increase in applied normal load. However the specific wear rate for 2%, 6%, 10% and 15% cenosphere reinforced vinylester composite decreases with the increase in applied normal load under dry conditions. The results showed that with increase in the applied normal load and sliding speed the coefficient of friction and spe- cific wear rate decreases under dry sliding conditions. It is also found that a thin film formed on the counterface seems to be effective in improving the tribological characteristics. The specific wear rates for pure vinylester and vinylester composite under dry sliding condition were in the order of 10-6 mm3/Nm. The results showed that the inclusion of cenosphere as filler materials in vinylester composites will increase the wear resistance of the composite significantly. SEM analysis has been carried to identify the wear mechanism.
出处 《Journal of Minerals and Materials Characterization and Engineering》 2012年第10期938-946,共9页 矿物质和材料特性和工程(英文)
关键词 COMPOSITES CENOSPHERE COEFFICIENT of FRICTION Vinylester WEAR Composites Cenosphere Coefficient of Friction Vinylester Wear
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部