摘要
To enhance the electrochemical performances of LiMn2O4 at elevated temperature (55°C), we proposed a sol-gel method to synthesize LiNi0.5Mn1.5O4 modified LiMn2O4. The physical and electrochemical performances of pristine and LiNi0.5Mn1.5O4-coated LiMn2O4 cathode materials were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and electrochemical measurements, respectively. The results indicated that about 4-5 nm thick layer of LiNi0.5Mn1.5O4 was formed on the surface of the LiMn2O4 powders. The modified LiMn2O4 exhibited excellent storage performance at 55°C compared to the pristine one, which was attributed to the suppression of electrolyte decomposition and the reduction of Mn dissolution.
To enhance the electrochemical performances of LiMn2O4 at elevated temperature (55°C), we proposed a sol-gel method to synthesize LiNi0.5Mn1.5O4 modified LiMn2O4. The physical and electrochemical performances of pristine and LiNi0.5Mn1.5O4-coated LiMn2O4 cathode materials were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and electrochemical measurements, respectively. The results indicated that about 4-5 nm thick layer of LiNi0.5Mn1.5O4 was formed on the surface of the LiMn2O4 powders. The modified LiMn2O4 exhibited excellent storage performance at 55°C compared to the pristine one, which was attributed to the suppression of electrolyte decomposition and the reduction of Mn dissolution.