期刊文献+

Microstructure and Corrosion Properties of the Plasma-MIG Welded AA5754 Automotive Alloy

Microstructure and Corrosion Properties of the Plasma-MIG Welded AA5754 Automotive Alloy
下载PDF
导出
摘要 The influence of heating cycles during plasma metal inert gas (MIG) welding on the microstructure and corrosion properties of the AA5754 automotive alloy has been investigated. The high heat input during plasma-MIG welding results in a significant modification in the microstructure of the AA5754 alloy adjacent to the fusion boundaries. As a consequence of partial melting of the Al-Fe-Mn-(Si) intermetallics at the partially melted zone (PMZ) and segregation of the high melting point elements (particularly Fe and Mn) toward the fusion zone, severe galvanic corrosion attacks can be enhanced along the PMZ of the AA5754 weld during exposure to aqueous corrosion environments. The influence of heating cycles during plasma metal inert gas (MIG) welding on the microstructure and corrosion properties of the AA5754 automotive alloy has been investigated. The high heat input during plasma-MIG welding results in a significant modification in the microstructure of the AA5754 alloy adjacent to the fusion boundaries. As a consequence of partial melting of the Al-Fe-Mn-(Si) intermetallics at the partially melted zone (PMZ) and segregation of the high melting point elements (particularly Fe and Mn) toward the fusion zone, severe galvanic corrosion attacks can be enhanced along the PMZ of the AA5754 weld during exposure to aqueous corrosion environments.
出处 《Journal of Minerals and Materials Characterization and Engineering》 2015年第4期318-325,共8页 矿物质和材料特性和工程(英文)
关键词 Plasma-MIG WELDING AA5754 MICROSTRUCTURE CORROSION PARTIALLY Melted ZONE Plasma-MIG Welding AA5754 Microstructure Corrosion Partially Melted Zone
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部