期刊文献+

Influence of Blasting Parameters and Density of Rocks on Blast Performance at Tschudi Mine, Tsumeb, Namibia

Influence of Blasting Parameters and Density of Rocks on Blast Performance at Tschudi Mine, Tsumeb, Namibia
下载PDF
导出
摘要 A quantitative research was conducted at Tschudi mine, Tsumeb, Namibia with its main drive being to determine the influence that density and blast parameters has on the performance of a blast. The factors that are most vital to the fragmentation process are classified into three namely: explosive parameters, rock parameters and blast geometry. Rock fragmentation is dependent on two main factors, the rock properties which are uncontrollable and the blasting parameters that can be manipulated to give maximum efficiency. The selected variable quantities, density, charge length, volume of blast and mass of charge per hole were recorded after observation, determined via laboratory testing or calculated from their known equations. The main objective is to develop a model to predict blasting performance, and this will be achieved with the use of the Kuz-Ram model. The proposed equation related mean expected fragmentation size (calculated using the Kuz-Ram fragmentation model) to the actual fragmentation. Blasting parameters namely: burden, spacing, and charge quantity that are not included in this study were measured or calculated on site to facilitate the inputs of the Kuz-Ram model. A specialized software package SPLIT Desktop was used to estimate the actual mean fragmentation by analyzing scaled images from the post blast muck pile. The Microsoft Excel regression analysis correlated the two intact rock properties with the blasting efficiency. The expected mean fragmentation and the actual fragmentation were then used to determine the blast performance, defined as the percentage ratio of the actual mean to the expected mean. The blast performance showed a good relationship with density (R2 = 0.81971), with performance of the blast reducing with an increase in density. The performance also dropped with increase in charge length. The blast performance and mass of charge/explosives per hole relationship showed a correlation of (R2 = 0.56195), but the results were disregarded. Lastly the volume of the blast had a direct relation to the blast performance (R2 = 0.80897) and it would be logical to state that, the two are directly proportional to each other. A quantitative research was conducted at Tschudi mine, Tsumeb, Namibia with its main drive being to determine the influence that density and blast parameters has on the performance of a blast. The factors that are most vital to the fragmentation process are classified into three namely: explosive parameters, rock parameters and blast geometry. Rock fragmentation is dependent on two main factors, the rock properties which are uncontrollable and the blasting parameters that can be manipulated to give maximum efficiency. The selected variable quantities, density, charge length, volume of blast and mass of charge per hole were recorded after observation, determined via laboratory testing or calculated from their known equations. The main objective is to develop a model to predict blasting performance, and this will be achieved with the use of the Kuz-Ram model. The proposed equation related mean expected fragmentation size (calculated using the Kuz-Ram fragmentation model) to the actual fragmentation. Blasting parameters namely: burden, spacing, and charge quantity that are not included in this study were measured or calculated on site to facilitate the inputs of the Kuz-Ram model. A specialized software package SPLIT Desktop was used to estimate the actual mean fragmentation by analyzing scaled images from the post blast muck pile. The Microsoft Excel regression analysis correlated the two intact rock properties with the blasting efficiency. The expected mean fragmentation and the actual fragmentation were then used to determine the blast performance, defined as the percentage ratio of the actual mean to the expected mean. The blast performance showed a good relationship with density (R2 = 0.81971), with performance of the blast reducing with an increase in density. The performance also dropped with increase in charge length. The blast performance and mass of charge/explosives per hole relationship showed a correlation of (R2 = 0.56195), but the results were disregarded. Lastly the volume of the blast had a direct relation to the blast performance (R2 = 0.80897) and it would be logical to state that, the two are directly proportional to each other.
出处 《Journal of Minerals and Materials Characterization and Engineering》 2017年第6期339-352,共14页 矿物质和材料特性和工程(英文)
关键词 FRAGMENTATION DENSITY Kuz-Ram Model BLASTING Efficiency Split DESKTOP Regression Analysis Fragmentation Density Kuz-Ram Model Blasting Efficiency Split Desktop Regression Analysis
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部