期刊文献+

H<sub>2</sub>and CH<sub>4</sub>Sorption on Cu-BTC Metal Organic Frameworks at Pressures up to 15 MPa and Temperatures between 273 and 318 K

H<sub>2</sub>and CH<sub>4</sub>Sorption on Cu-BTC Metal Organic Frameworks at Pressures up to 15 MPa and Temperatures between 273 and 318 K
下载PDF
导出
摘要 Sorption isotherms of methane and hydrogen on Cu3(BTC)2 have been measured in the temperature range from 273 to 318 K and at pressures up to 15 MPa. H2 excess sorption capacities of the Cu3(BTC)2 amounted to 3.9 mg/g at 14 MPa. Promising maximum CH4 excess sorption capacities on the same sample were reached at approximately 5 MPa. They amounted to 101, 100, 92 and 80 mg/g at 273, 278, 293 and 318 K, respectively. The sorbed phase density was essestially the same for all temperatures and amounted to ~600 kg/m3. Structural changes of the Cu3(BTC)2 samples after thermal activation and treatment with high pressure H2 and CH4 were tested. It was found that the initial micropore structure has virtually disappeared as evidenced by a decrease of the Langmuir specific surface area by a factor ~3 and CO2 micropore volume by a factor of ~4 for H2 and ~3 for CH4. This is in line with an increase in the average pore diameter from initially 9.2 to 15.7 for H2 and 12.8 for CH4. Sorption isotherms of methane and hydrogen on Cu3(BTC)2 have been measured in the temperature range from 273 to 318 K and at pressures up to 15 MPa. H2 excess sorption capacities of the Cu3(BTC)2 amounted to 3.9 mg/g at 14 MPa. Promising maximum CH4 excess sorption capacities on the same sample were reached at approximately 5 MPa. They amounted to 101, 100, 92 and 80 mg/g at 273, 278, 293 and 318 K, respectively. The sorbed phase density was essestially the same for all temperatures and amounted to ~600 kg/m3. Structural changes of the Cu3(BTC)2 samples after thermal activation and treatment with high pressure H2 and CH4 were tested. It was found that the initial micropore structure has virtually disappeared as evidenced by a decrease of the Langmuir specific surface area by a factor ~3 and CO2 micropore volume by a factor of ~4 for H2 and ~3 for CH4. This is in line with an increase in the average pore diameter from initially 9.2 to 15.7 for H2 and 12.8 for CH4.
机构地区 不详
出处 《Journal of Surface Engineered Materials and Advanced Technology》 2011年第2期23-29,共7页 表面工程材料与先进技术期刊(英文)
关键词 Metal ORGANIC Framework (MOF) SORPTION METHANE Hydrogen PORE Structure Metal Organic Framework (MOF) Sorption Methane Hydrogen Pore Structure
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部