期刊文献+

Surface and Bulk Defects in Cr-Mn Iron Alloy Cast in Metal and Sand Moulds: Characterization by Positron Annihilation Techniques

Surface and Bulk Defects in Cr-Mn Iron Alloy Cast in Metal and Sand Moulds: Characterization by Positron Annihilation Techniques
下载PDF
导出
摘要 High chromium (Cr: 16% - 19%) iron alloy with 5% and 10% manganese (Mn) fabricated in metal and sand moulds by induction melting technique were investigated for defects microstructure both in the as-cast and heat treated conditions. Non-destructive techniques namely Positron Lifetime Spectroscopy and slow positron Doppler Broadening studies were employed to characterize the defects in the bulk as well as surface of the alloy and their influence of metallurgical parameters. The Positron Lifetime Spectroscopy data reveals that the defect concentration is higher for sand mould alloy samples compared to metal mould ones. The reasons for fewer defects in metal mould are attributed to faster heat transfer in the metal mould. Further, heat treatment yielded spherodization of carbides in the matrix resulting in reduced defects concentration. The S-parameter profiles from Doppler Broadening studies suggest defect concentration at the surface is less in 5% Manganese and near absence of any modification of defect structure following heat treatment in 10% Manganese sample closer to surface. High chromium (Cr: 16% - 19%) iron alloy with 5% and 10% manganese (Mn) fabricated in metal and sand moulds by induction melting technique were investigated for defects microstructure both in the as-cast and heat treated conditions. Non-destructive techniques namely Positron Lifetime Spectroscopy and slow positron Doppler Broadening studies were employed to characterize the defects in the bulk as well as surface of the alloy and their influence of metallurgical parameters. The Positron Lifetime Spectroscopy data reveals that the defect concentration is higher for sand mould alloy samples compared to metal mould ones. The reasons for fewer defects in metal mould are attributed to faster heat transfer in the metal mould. Further, heat treatment yielded spherodization of carbides in the matrix resulting in reduced defects concentration. The S-parameter profiles from Doppler Broadening studies suggest defect concentration at the surface is less in 5% Manganese and near absence of any modification of defect structure following heat treatment in 10% Manganese sample closer to surface.
机构地区 不详
出处 《Journal of Surface Engineered Materials and Advanced Technology》 2011年第3期136-143,共8页 表面工程材料与先进技术期刊(英文)
关键词 CR-MN CAST Iron Heat Treatment POSITRON LIFETIME Spectroscopy SLOW POSITRON Beam Analysis Cr-Mn Cast Iron Heat Treatment Positron Lifetime Spectroscopy Slow Positron Beam Analysis
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部