期刊文献+

Glass Marking with CO<sub>2</sub>Laser: Experimental Study of the Interaction Laser - Material

Glass Marking with CO<sub>2</sub>Laser: Experimental Study of the Interaction Laser - Material
下载PDF
导出
摘要 Laser marking is a laser processing technology used in many fields of industry like automotive [1], aerospace [2], microelectronic [3] and medecine [4]. CO2 laser is an appropriate source for marking glasses [5]. Compared to the other techniques of marking, the principal advantages of the use of the laser are: made inalterable, high degree of accuracy and the smoothness of the features, the possibility of marking at difficult to reach places, and the fact of being able to mark fragile materials like ceramic and glass [6]. In this experimental work, the influence of marking parameters like interaction time laser-glass, laser power, shooting time etc. on the micromarking precision are reported. A “melt” depth prediction model has been established. Laser marking is a laser processing technology used in many fields of industry like automotive [1], aerospace [2], microelectronic [3] and medecine [4]. CO2 laser is an appropriate source for marking glasses [5]. Compared to the other techniques of marking, the principal advantages of the use of the laser are: made inalterable, high degree of accuracy and the smoothness of the features, the possibility of marking at difficult to reach places, and the fact of being able to mark fragile materials like ceramic and glass [6]. In this experimental work, the influence of marking parameters like interaction time laser-glass, laser power, shooting time etc. on the micromarking precision are reported. A “melt” depth prediction model has been established.
机构地区 不详
出处 《Journal of Surface Engineered Materials and Advanced Technology》 2012年第1期32-39,共8页 表面工程材料与先进技术期刊(英文)
关键词 LASER GLASS MARKING Experimental Design Laser Glass Marking Experimental Design

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部