摘要
The microstructure, phase consistence and microhardness of thermal sprayed coatings were investigated. The tungsten and chromium carbide coatings and also composite NiCrSiB coating were analyzed. The microstructure of coatings were observed by using optical microscopy (MO), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Almost equiaxial carbide particles settled inside the surrounded material of coating were found. The cracks propagating thorough the particles and along boundaries between the particles and surrounded material were observed. This phenomenon was connected with the porosity of coatings. The decarburization process was detected in coatings by phase composition investigation using X-ray method. The decarburization process was the reason due to which beside initial Cr3C2 the Cr7C3 and Cr23C6 particles were found. In the tungsten coatings beside the initial WC carbides the W2Cones were found.
The microstructure, phase consistence and microhardness of thermal sprayed coatings were investigated. The tungsten and chromium carbide coatings and also composite NiCrSiB coating were analyzed. The microstructure of coatings were observed by using optical microscopy (MO), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Almost equiaxial carbide particles settled inside the surrounded material of coating were found. The cracks propagating thorough the particles and along boundaries between the particles and surrounded material were observed. This phenomenon was connected with the porosity of coatings. The decarburization process was detected in coatings by phase composition investigation using X-ray method. The decarburization process was the reason due to which beside initial Cr3C2 the Cr7C3 and Cr23C6 particles were found. In the tungsten coatings beside the initial WC carbides the W2Cones were found.
基金
financially supported by polish project NR15 0001 06
the Ministry of Higher Education and Science/AGH University of Science and Technology,Krakow,Poland,grant number 11.11.180.255 is greatly acknowledged.