期刊文献+

Epitaxial Ge Growth on Si(111) Covered with Ultrathin SiO<sub>2</sub>Films

Epitaxial Ge Growth on Si(111) Covered with Ultrathin SiO<sub>2</sub>Films
下载PDF
导出
摘要 The epitaxial growth of Ge on Si(111) covered with the 0.3 nm thick SiO2 film is studied by scanning tunneling microscopy. Nanoareas of bare Si in the SiO2 film are prepared by Ge deposition at a temperature in the range of 570℃-650℃ due to the formation of volatile SiO and GeO molecules. The surface morphology of Ge layers grown further at 360℃-500℃ is composed of facets and large flat areas with the Ge(111)-c(2 × 8) reconstruction which is typical of unstrained Ge. Orientations of the facets, which depend on the growth temperature, are identified. The growth at 250℃-300℃ produces continuous epitaxial Ge layers on Si(111). A comparison of the surface morphology of Ge layers grown on bare and SiO2-film covered Si(111) surfaces shows a significantly lower Ge-Si intermixing in the latter case due to a reduction in the lattice strain. The found approach to reduce the strain suggests the opportunity of the thin continuous epitaxial Ge layer formation on Si(111). The epitaxial growth of Ge on Si(111) covered with the 0.3 nm thick SiO2 film is studied by scanning tunneling microscopy. Nanoareas of bare Si in the SiO2 film are prepared by Ge deposition at a temperature in the range of 570℃-650℃ due to the formation of volatile SiO and GeO molecules. The surface morphology of Ge layers grown further at 360℃-500℃ is composed of facets and large flat areas with the Ge(111)-c(2 × 8) reconstruction which is typical of unstrained Ge. Orientations of the facets, which depend on the growth temperature, are identified. The growth at 250℃-300℃ produces continuous epitaxial Ge layers on Si(111). A comparison of the surface morphology of Ge layers grown on bare and SiO2-film covered Si(111) surfaces shows a significantly lower Ge-Si intermixing in the latter case due to a reduction in the lattice strain. The found approach to reduce the strain suggests the opportunity of the thin continuous epitaxial Ge layer formation on Si(111).
出处 《Journal of Surface Engineered Materials and Advanced Technology》 2013年第3期195-204,共10页 表面工程材料与先进技术期刊(英文)
关键词 GE/SI Heterostructures EPITAXIAL GROWTH Surface Morphology Scanning Tunneling Microscopy Ge/Si Heterostructures Epitaxial Growth Surface Morphology Scanning Tunneling Microscopy
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部