摘要
The precipitation of TiN inclusion during solidification of different carbon content of 0.72%, 0.82% and 0.95% in tire cord steel is thermodynamically studied respectively. The results show that the carbon content has obvious effect on TiN inclusion precipitated in tire cord steel of different strength levels. With the carbon content of tire cord steel increasing, the temperature before solidifying reduced gradually and the required activity product of titanium and nitrogen for TiN inclusion precipitation also declined gradually. With the same condition of initial Ti and N content in liquid steel, the size of TiN inclusion precipitated in tire cord steel of higher carbon content is bigger than that of lower carbon content. In order to control the harmful effects on processability of TiN inclusion precipitated in hypereutectoid tire cord steel of the ultra high strength level, the measures of smelting process must be taken to further reduce the titanium and nitrogen content in liquid steel.
The precipitation of TiN inclusion during solidification of different carbon content of 0.72%, 0.82% and 0.95% in tire cord steel is thermodynamically studied respectively. The results show that the carbon content has obvious effect on TiN inclusion precipitated in tire cord steel of different strength levels. With the carbon content of tire cord steel increasing, the temperature before solidifying reduced gradually and the required activity product of titanium and nitrogen for TiN inclusion precipitation also declined gradually. With the same condition of initial Ti and N content in liquid steel, the size of TiN inclusion precipitated in tire cord steel of higher carbon content is bigger than that of lower carbon content. In order to control the harmful effects on processability of TiN inclusion precipitated in hypereutectoid tire cord steel of the ultra high strength level, the measures of smelting process must be taken to further reduce the titanium and nitrogen content in liquid steel.