期刊文献+

Nanocomposites Based on Conducting Polymers and Functionalized Carbon Nanotubes with Different Dopants Obtained by Electropolymerization

下载PDF
导出
摘要 Nanocomposite films based on poly (3,4-ethylenedioxy thiophene) (PEDOT), functionalized single-walled carbon nanotubes and different dopants were studied. It was fabricated by a simple oxidative electropolymerization method. The dopant substances used were SDS (Sodium dodecyl sulfate) and tiron (1,2-Dihydroxybenzene-3,5-disulfonic acid disodium salt hydrate). These nano-composite films were grown electrochemically from aqueous solutions such that constituents were deposited simultaneously onto substrate electrode. The synthetic, morphological and electrical properties of the nanocomposite films obtained were compared. Scanning electron microscopy (SEM) revealed that the composite films consisted of nanoporous networks of SWCNTS (single-walled carbon nanotubes) coated with polymeric film. Cyclic voltammetry (CV), electro-chemical impedance spectroscopy (EIS) and FT-IR spectroscopy demonstrated that these composite films had similar electrochemical response rates to pure polymeric films but a lower resistance and much improved mechanical integrity. The negatively charged functionalized carbon nano-tubes (CNTSF) served as anionic dopant during the electropolymerization to synthesize polymer/CNTSF composite films. The specific electrochemical capacitance of the composite films is a significantly higher value than that for pure polymer films prepared similarly. Using these composite films, the modified electrodes with improved properties were obtained. (In this paper, for simplicity, the SWANTs-COOH group will be noted CNTsF which means functionalized carbon nanotubes.) Nanocomposite films based on poly (3,4-ethylenedioxy thiophene) (PEDOT), functionalized single-walled carbon nanotubes and different dopants were studied. It was fabricated by a simple oxidative electropolymerization method. The dopant substances used were SDS (Sodium dodecyl sulfate) and tiron (1,2-Dihydroxybenzene-3,5-disulfonic acid disodium salt hydrate). These nano-composite films were grown electrochemically from aqueous solutions such that constituents were deposited simultaneously onto substrate electrode. The synthetic, morphological and electrical properties of the nanocomposite films obtained were compared. Scanning electron microscopy (SEM) revealed that the composite films consisted of nanoporous networks of SWCNTS (single-walled carbon nanotubes) coated with polymeric film. Cyclic voltammetry (CV), electro-chemical impedance spectroscopy (EIS) and FT-IR spectroscopy demonstrated that these composite films had similar electrochemical response rates to pure polymeric films but a lower resistance and much improved mechanical integrity. The negatively charged functionalized carbon nano-tubes (CNTSF) served as anionic dopant during the electropolymerization to synthesize polymer/CNTSF composite films. The specific electrochemical capacitance of the composite films is a significantly higher value than that for pure polymer films prepared similarly. Using these composite films, the modified electrodes with improved properties were obtained. (In this paper, for simplicity, the SWANTs-COOH group will be noted CNTsF which means functionalized carbon nanotubes.)
出处 《Journal of Surface Engineered Materials and Advanced Technology》 2014年第3期164-179,共16页 表面工程材料与先进技术期刊(英文)
基金 Financial support from PN-II-ID-PCE-2008-2 contract number 596,code ID_716(The National University Research Council)is gratefully acknowledged.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部