摘要
Cetyltrimethylammonium bromide-modified kaolin (CTAB-kaolin or KC) was prepared and tested as an adsorbent for an anionic dye Congo red (CR) removal from aqueous solution in comparison with natural kaolin (K). The effect of various experimental parameters was investigated using a batch adsorption technique. In this manner, the adsorption isotherms and adsorption kinetics of CR on K and KC were examined. The isothermal data could be well described by the Langmuir equation and the dynamical data fit well with the pseudo-second-order kinetic model. The adsorption capacity of modified kaolin KC (24.46 mg/g) was found to be around 4 times higher than that of natural kaolin K (5.94 mg/g). The KC demonstrated the highest adsorption capacity by removing over 98% of CR after ten minutes of contact. These results indicate that CTAB-kaolin could be employed as low-cost alternative to activated carbon in wastewater treatment for the removal of colour which comes from industrial effluents of textile activities, tanning or printing.
Cetyltrimethylammonium bromide-modified kaolin (CTAB-kaolin or KC) was prepared and tested as an adsorbent for an anionic dye Congo red (CR) removal from aqueous solution in comparison with natural kaolin (K). The effect of various experimental parameters was investigated using a batch adsorption technique. In this manner, the adsorption isotherms and adsorption kinetics of CR on K and KC were examined. The isothermal data could be well described by the Langmuir equation and the dynamical data fit well with the pseudo-second-order kinetic model. The adsorption capacity of modified kaolin KC (24.46 mg/g) was found to be around 4 times higher than that of natural kaolin K (5.94 mg/g). The KC demonstrated the highest adsorption capacity by removing over 98% of CR after ten minutes of contact. These results indicate that CTAB-kaolin could be employed as low-cost alternative to activated carbon in wastewater treatment for the removal of colour which comes from industrial effluents of textile activities, tanning or printing.