期刊文献+

Bifunctional Role of Thiosalicylic Acid in the Synthesis of Silver Nanoparticles

Bifunctional Role of Thiosalicylic Acid in the Synthesis of Silver Nanoparticles
下载PDF
导出
摘要 Conventional synthesis of silver nanoparticles employs a reducing agent and a capping agent. Surfactants are effec-tive capping agents as they prevent the aggregation of nanoparticles during storage and use. However, the biocompatibility of several of the surfactants is questionable. In this report, the use of thiosalicylic acid as both reducing and capping agent is reported. Compared to conventional synthesis, this methodology requires higher temperature for synthesis, which then is expected to result in aggregates of larger size. The ability of three different synthesis methodologies – direct heating, photochemical and microwave dielectric treatment were evaluated and assessed on the basis of the size, size distribution and stability of the particles. Microwave irradiation was found to be most suitable for achieving particles with a hydrodynamic diameter of 10 nm. Our studies indicate that -COO- group is involved in the reduction of Ag+ and –SH group of TSA is involved in the capping of the nanoparticles. Conventional synthesis of silver nanoparticles employs a reducing agent and a capping agent. Surfactants are effec-tive capping agents as they prevent the aggregation of nanoparticles during storage and use. However, the biocompatibility of several of the surfactants is questionable. In this report, the use of thiosalicylic acid as both reducing and capping agent is reported. Compared to conventional synthesis, this methodology requires higher temperature for synthesis, which then is expected to result in aggregates of larger size. The ability of three different synthesis methodologies – direct heating, photochemical and microwave dielectric treatment were evaluated and assessed on the basis of the size, size distribution and stability of the particles. Microwave irradiation was found to be most suitable for achieving particles with a hydrodynamic diameter of 10 nm. Our studies indicate that -COO- group is involved in the reduction of Ag+ and –SH group of TSA is involved in the capping of the nanoparticles.
机构地区 不详
出处 《Materials Sciences and Applications》 2010年第5期272-278,共7页 材料科学与应用期刊(英文)
关键词 SILVER Nanoparticles Microwave Dielectric HEATING Reducing cum Capping Agent Thiosalicylic Acid PHOTON Correlation Spectroscopy ZETA Potential Silver Nanoparticles Microwave Dielectric Heating Reducing cum Capping Agent Thiosalicylic Acid Photon Correlation Spectroscopy Zeta Potential

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部