期刊文献+

Influence of Ni and Cr Content on Corrosion Resistance of Ni-Cr-Mo Alloys for Fixed Dental Prostheses in 0.05% NaF Aqueous Solution

Influence of Ni and Cr Content on Corrosion Resistance of Ni-Cr-Mo Alloys for Fixed Dental Prostheses in 0.05% NaF Aqueous Solution
下载PDF
导出
摘要 The Ni-Cr-Mo alloys have been used as dental prostheses because they own a good mechanical strength, high corrosion resistance and even to be economically viable. These alloys corrosion protection against in salt solutions typical of physiological media is due to passivation phenomenon with an oxide surface layer formation, mainly chromium oxides. This protective film, subjected to a mechanical stress in a corrosive environment, can partially dissolve by releasing ions, which have deleterious effects in a human body. Fluoride ions, existing in hygiene products, change the buccal environment and their presence may enable a localized corrosion process initiation. The aim of this work has been to investigate the chemical composition influence of three alloys in corrosion resistance to: A (Ni-73% Cr-14% Mo-8.5% Be-1.8% Al-1.8%), B (Ni-61% Cr-25% Mo-10.5% Si-1.5%) and C (Ni-65% Cr-22.5% Mo-9.5%) in media containing fluorides that simulate mouthwashes solution. The study has been done in a 0.05% NaF solution, pH 6, at 37°C using electrochemical techniques. The alloy with the highest nickel and the lowest chromium content is not passive in the middle studied, showing a continuous increase in current density with the potential increasing, while the other alloys show passivation range of 600 mV and passive current density of about 10-6 A/cm2. The Ni-Cr-Mo alloys have been used as dental prostheses because they own a good mechanical strength, high corrosion resistance and even to be economically viable. These alloys corrosion protection against in salt solutions typical of physiological media is due to passivation phenomenon with an oxide surface layer formation, mainly chromium oxides. This protective film, subjected to a mechanical stress in a corrosive environment, can partially dissolve by releasing ions, which have deleterious effects in a human body. Fluoride ions, existing in hygiene products, change the buccal environment and their presence may enable a localized corrosion process initiation. The aim of this work has been to investigate the chemical composition influence of three alloys in corrosion resistance to: A (Ni-73% Cr-14% Mo-8.5% Be-1.8% Al-1.8%), B (Ni-61% Cr-25% Mo-10.5% Si-1.5%) and C (Ni-65% Cr-22.5% Mo-9.5%) in media containing fluorides that simulate mouthwashes solution. The study has been done in a 0.05% NaF solution, pH 6, at 37°C using electrochemical techniques. The alloy with the highest nickel and the lowest chromium content is not passive in the middle studied, showing a continuous increase in current density with the potential increasing, while the other alloys show passivation range of 600 mV and passive current density of about 10-6 A/cm2.
机构地区 不详
出处 《Materials Sciences and Applications》 2010年第6期369-372,共4页 材料科学与应用期刊(英文)
关键词 NI-CR-MO ALLOYS Dental PROSTHESES Corrosion Ni-Cr-Mo Alloys Dental Prostheses Corrosion
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部