摘要
The stress field distribution in composite cross ply laminates damaged by matrix cracking is analysed through an approach which uses several hypotheses to simplify the damage state. The proposed cracking criterion involves the partial components of the strain energy release rate associated with transverse and longitudinal cracking. The respective contributions of the 0° and 90° layers to the damage process are also investigated. The initiation of transverse and longitudinal cracking mechanisms is predicted. We also give an assessment of the influence of each individual component of the stress tensor on the strain energy release rate of the damaged laminate.
The stress field distribution in composite cross ply laminates damaged by matrix cracking is analysed through an approach which uses several hypotheses to simplify the damage state. The proposed cracking criterion involves the partial components of the strain energy release rate associated with transverse and longitudinal cracking. The respective contributions of the 0° and 90° layers to the damage process are also investigated. The initiation of transverse and longitudinal cracking mechanisms is predicted. We also give an assessment of the influence of each individual component of the stress tensor on the strain energy release rate of the damaged laminate.