摘要
Zn substituted Cu-Zn ferrites with a composition Cu1-xZnxFe2O4 have been synthesized by standard double sintering ceramic method and characterized by X-ray diffraction. The single-phase cubic spinel structure of all the samples has been confirmed from X-ray diffraction analyses. The lattice constant is found to increase linearly with the manganese content obeying Vegard’s law. This increase in lattice parameter is explained in terms of the sizes of component ions. It is well known that density plays a key role in controlling the properties of polycrystalline ferrites. The X-ray and bulk densities of the Cu-Zn ferrite is significantly decreased whereas porosity increased with increasing Zn concentration, thereby giving an impression that zinc might be helping in the densification of the materials. SEM micrographs exhibit a decrease in grain size with increasing Zn content. The real part of initial permeability, μ′ increase with increasing Zn contents upto x = 0.5 after that it decreases with higher Zn content.
Zn substituted Cu-Zn ferrites with a composition Cu1-xZnxFe2O4 have been synthesized by standard double sintering ceramic method and characterized by X-ray diffraction. The single-phase cubic spinel structure of all the samples has been confirmed from X-ray diffraction analyses. The lattice constant is found to increase linearly with the manganese content obeying Vegard’s law. This increase in lattice parameter is explained in terms of the sizes of component ions. It is well known that density plays a key role in controlling the properties of polycrystalline ferrites. The X-ray and bulk densities of the Cu-Zn ferrite is significantly decreased whereas porosity increased with increasing Zn concentration, thereby giving an impression that zinc might be helping in the densification of the materials. SEM micrographs exhibit a decrease in grain size with increasing Zn content. The real part of initial permeability, μ′ increase with increasing Zn contents upto x = 0.5 after that it decreases with higher Zn content.