期刊文献+

Effect of Ge Incorporation on Bandgap and Photosensitivity of Amorphous SiGe Thin Films 被引量:2

Effect of Ge Incorporation on Bandgap and Photosensitivity of Amorphous SiGe Thin Films
下载PDF
导出
摘要 We investigated the structural and optical properties of amorphous-SiGe thin films synthesized via a low-cost, high-growth rate deposition method. Films were formed by e-beam evaporation of mixed pellets of Si and Ge. Film composition was varied by changing the weight ratio of Si and Ge pellets mixture. Films were amorphous with a composition uniform. Ge-rich films are in tensile stress, while Si-rich films are in compressive stress. As the Ge fraction increases (from 22 at.% to 94 at.%), the optical bandgap decreases (from 1.7 eV to 0.9 eV) and the photosensitivity of the films extends into IR band of solar spectrum. By changing the weighted ratio of the evaporation source mixture, the bandgap and optical sensitivity of a-SiGe films can be easily tuned. Our studies prove that a-SiGe films are a tunable absorber. This can be used for photo-detector, photovoltaic and microelectronic applications to extend the spectral response. We investigated the structural and optical properties of amorphous-SiGe thin films synthesized via a low-cost, high-growth rate deposition method. Films were formed by e-beam evaporation of mixed pellets of Si and Ge. Film composition was varied by changing the weight ratio of Si and Ge pellets mixture. Films were amorphous with a composition uniform. Ge-rich films are in tensile stress, while Si-rich films are in compressive stress. As the Ge fraction increases (from 22 at.% to 94 at.%), the optical bandgap decreases (from 1.7 eV to 0.9 eV) and the photosensitivity of the films extends into IR band of solar spectrum. By changing the weighted ratio of the evaporation source mixture, the bandgap and optical sensitivity of a-SiGe films can be easily tuned. Our studies prove that a-SiGe films are a tunable absorber. This can be used for photo-detector, photovoltaic and microelectronic applications to extend the spectral response.
机构地区 不详
出处 《Materials Sciences and Applications》 2012年第2期67-71,共5页 材料科学与应用期刊(英文)
关键词 A-Si1–xGex THIN FILMS Structural PROPERTIES Optical PROPERTIES Compositional EFFECT Bandgap Tuning A-Si1–xGex Thin Films Structural Properties Optical Properties Compositional Effect Bandgap Tuning
  • 相关文献

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部