期刊文献+

Ion and Gas Nitriding Applied to Steel Tool for Hot Work X38CrMoV5 Nitriding Type: Impact on the Wear Resistance 被引量:1

Ion and Gas Nitriding Applied to Steel Tool for Hot Work X38CrMoV5 Nitriding Type: Impact on the Wear Resistance
下载PDF
导出
摘要 The present work is to characterize both processes of thermochemical treatments: plasma nitriding and gas. The tests were carried out in collaboration with the Franco-Tunisian heat treatment (F3T) applied to a widely used steel in industrial production as a tool for hot work on X38CrMoV5 (AISI H13). The material underwent a first cycle of hardening heat treatment at 1030℃ followed by two successive incomes at 550℃ and 590℃. After nitriding (ion and gas), the quantification of wear was performed in the laboratory of tribology at SUPMECA (St. Ouen). After defining the test conditions on the alternative tribometer ensuring on one hand a quantitatively sufficient wear and avoiding on the other hand, the phenomenon of jamming. The conditions chosen are: 58.8 N load, frequency 0.5 Hz, friction coefficient μ = 0.5. The wear tracks were scanned using the profilometer Talysurf 5 M type, which allowed us to assess the volume used and the wear rate. Moreover, these tracks were characterized by metallography. What emerges from this work is that the control parameters of ion nitriding ensures a better depth of treatment for the same holding time with a total absence of the white layer known for chipping and fragility. The present work is to characterize both processes of thermochemical treatments: plasma nitriding and gas. The tests were carried out in collaboration with the Franco-Tunisian heat treatment (F3T) applied to a widely used steel in industrial production as a tool for hot work on X38CrMoV5 (AISI H13). The material underwent a first cycle of hardening heat treatment at 1030℃ followed by two successive incomes at 550℃ and 590℃. After nitriding (ion and gas), the quantification of wear was performed in the laboratory of tribology at SUPMECA (St. Ouen). After defining the test conditions on the alternative tribometer ensuring on one hand a quantitatively sufficient wear and avoiding on the other hand, the phenomenon of jamming. The conditions chosen are: 58.8 N load, frequency 0.5 Hz, friction coefficient μ = 0.5. The wear tracks were scanned using the profilometer Talysurf 5 M type, which allowed us to assess the volume used and the wear rate. Moreover, these tracks were characterized by metallography. What emerges from this work is that the control parameters of ion nitriding ensures a better depth of treatment for the same holding time with a total absence of the white layer known for chipping and fragility.
作者 S. Ben Slima
机构地区 Research Unit
出处 《Materials Sciences and Applications》 2012年第9期640-644,共5页 材料科学与应用期刊(英文)
关键词 STEEL TOOL Heat Treatment NITRIDING MICROHARDNESS FRAGILITY Steel Tool Heat Treatment Nitriding Microhardness Fragility
  • 相关文献

同被引文献1

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部