摘要
A carbonization method is reported to improve the thermal conductivity of carbon nanotube (CNT) arrays. After being impregnated with phenolic resins, CNT arrays were carbonized at a temperature up to 1400°C. As a result, pyrolytic carbon was formed and connected non-neighboring CNTs. The pyrolysis improved the room temperature conductivity from below 2 W/m·K up to 11.8 and 14.6 W/m·K with carbonization at 800°C and 1400°C, respectively. Besides the light mass density of 1.1 g/cm3, the C/C composites demonstrated high thermal stability and a higher conductivity up to 21.4 W/m·K when working at 500°C.
A carbonization method is reported to improve the thermal conductivity of carbon nanotube (CNT) arrays. After being impregnated with phenolic resins, CNT arrays were carbonized at a temperature up to 1400°C. As a result, pyrolytic carbon was formed and connected non-neighboring CNTs. The pyrolysis improved the room temperature conductivity from below 2 W/m·K up to 11.8 and 14.6 W/m·K with carbonization at 800°C and 1400°C, respectively. Besides the light mass density of 1.1 g/cm3, the C/C composites demonstrated high thermal stability and a higher conductivity up to 21.4 W/m·K when working at 500°C.