摘要
Recently, a new PLZT bulk single plate, called ceramic-controlled piezoelectric with two Platinum wires (CCP2) has been produced;this CCP2 has two (250 μm of diameter and 1 cm long) Platinum-wire implants. This unconventional isolation device for use with diagnostic ECG devices provides high common mode rejection and low leakage current using piezo isolator based on two Platinum wires implanted Lead Lanthanum Zirconate Titanate bulk ceramic. These isolation was validated using four experimental setups;one of them determine that ceramic-controlled piezoelectric with two Platinum wires (CCP2) support up to 6 kV DC before it cracks (short cut). The second experimental setup determined high resistance about 3.9 × 109 Ω and 1.8 × 109 Ω measured on lateral sides and among Platinum wires of CCP2 respectively. The third experimental setup was to obtain the current leakage from CCP2 and it was 6 nA. The fourth experimental setup was to obtain frequency response that was the maximum up to 2.2 MHz and was a pass band filter. Finally the CCP2 was applied as new isolator in a ECG circuit, where bioelectrical ECG signal is modulating at 16 KHz using the piezoelectric effect obtaining excellent results.
Recently, a new PLZT bulk single plate, called ceramic-controlled piezoelectric with two Platinum wires (CCP2) has been produced;this CCP2 has two (250 μm of diameter and 1 cm long) Platinum-wire implants. This unconventional isolation device for use with diagnostic ECG devices provides high common mode rejection and low leakage current using piezo isolator based on two Platinum wires implanted Lead Lanthanum Zirconate Titanate bulk ceramic. These isolation was validated using four experimental setups;one of them determine that ceramic-controlled piezoelectric with two Platinum wires (CCP2) support up to 6 kV DC before it cracks (short cut). The second experimental setup determined high resistance about 3.9 × 109 Ω and 1.8 × 109 Ω measured on lateral sides and among Platinum wires of CCP2 respectively. The third experimental setup was to obtain the current leakage from CCP2 and it was 6 nA. The fourth experimental setup was to obtain frequency response that was the maximum up to 2.2 MHz and was a pass band filter. Finally the CCP2 was applied as new isolator in a ECG circuit, where bioelectrical ECG signal is modulating at 16 KHz using the piezoelectric effect obtaining excellent results.