期刊文献+

Effect of Composition and Morphology on Sensor Properties of Aerosol Deposited Nanostructured ZnO+In<SUB>2</SUB>O<SUB>3</SUB>Films

Effect of Composition and Morphology on Sensor Properties of Aerosol Deposited Nanostructured ZnO+In<SUB>2</SUB>O<SUB>3</SUB>Films
下载PDF
导出
摘要 The structural characteristics are investigated of nanoheterogeneous films comprising ZnO, In2 O3 and ZnO + In2 O3 composite produced by aerosol spray pyrolysis technique (SPT). The process utilizes water solutions of zinc chloride and indium nitrate precursors. The X-ray diffraction data show that the SPT process results in polycrystalline films of hexagonal wurtzite type ZnO, and In2 O3 crystals of cubic structure. SPT-synthesized ZnO + In2 O3composites contain mixtures of these crystals. The morphology of the synthesized films is studied by scanning electron microscopy as well as the dependence of morphology on the synthesis conditions, specifically the temperature of the aerosol precipitation and the concentration of the precursors in solutions. The characteristics of nucleation and growth of oxide crystals during the synthesis of ZnO + In2 O3 composite films are also considered. The film with the composition 25 wt% ZnO + 75 wt% In2 O3 contains a large number of small crystal aggregates of arbitrary shape with a high density of contacts between the aggregates and are characterized by a homogeneous structure with high dispersion. Such morphology has high specific surface, which favors high sensory response. In addition, in this range of aggregate composition the relationship between the particles of the catalytically active component- ZnO, cleavage of hydrogen molecule, and In2 O3particles with a high concentration of conduction electrons is close to optimal for the maximum sensory effect in the detection of hydrogen. The structural characteristics are investigated of nanoheterogeneous films comprising ZnO, In2 O3 and ZnO + In2 O3 composite produced by aerosol spray pyrolysis technique (SPT). The process utilizes water solutions of zinc chloride and indium nitrate precursors. The X-ray diffraction data show that the SPT process results in polycrystalline films of hexagonal wurtzite type ZnO, and In2 O3 crystals of cubic structure. SPT-synthesized ZnO + In2 O3composites contain mixtures of these crystals. The morphology of the synthesized films is studied by scanning electron microscopy as well as the dependence of morphology on the synthesis conditions, specifically the temperature of the aerosol precipitation and the concentration of the precursors in solutions. The characteristics of nucleation and growth of oxide crystals during the synthesis of ZnO + In2 O3 composite films are also considered. The film with the composition 25 wt% ZnO + 75 wt% In2 O3 contains a large number of small crystal aggregates of arbitrary shape with a high density of contacts between the aggregates and are characterized by a homogeneous structure with high dispersion. Such morphology has high specific surface, which favors high sensory response. In addition, in this range of aggregate composition the relationship between the particles of the catalytically active component- ZnO, cleavage of hydrogen molecule, and In2 O3particles with a high concentration of conduction electrons is close to optimal for the maximum sensory effect in the detection of hydrogen.
出处 《Materials Sciences and Applications》 2015年第3期220-227,共8页 材料科学与应用期刊(英文)
关键词 Nanoheterogenous FILMS Nanocomposite FILMS Mixed Metal Oxide FILMS AEROSOL Deposition Nanoheterogenous Films Nanocomposite Films Mixed Metal Oxide Films Aerosol Deposition
  • 相关文献

参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部