期刊文献+

Synthesis and Characterization of Advanced Red Mud and MWCNTs Based EMI Shielding Material via Ceramic Processing

Synthesis and Characterization of Advanced Red Mud and MWCNTs Based EMI Shielding Material via Ceramic Processing
下载PDF
导出
摘要 For the first time in the world advanced multi layered Red Mud and MWCNTs (ARMC) based EMI shielding material has been developed at CSIR-AMPRI, Bhopal. Red mud provides oxides of titanium and iron as precursor and the MWCNTs provides electrical conductivity characteristics necessary for making desired EMI shielding materials. The novel process involves unique designing of chemical compositions and mineralogical phases of red mud, MWCNTs together with appropriate additive and solvent which results in the simultaneous and synergistic chemical reactions among various constituents thereby forming tailored precursor powder. Further, the ceramic processing of tailored precursor powder in appropriate environment enables formation of advanced ARMC shielding material having a variety of ceramic phases with multi elemental compositions and multi layered crystal structures. The synthesized material was characterized by various techniques namely XRD, PL, FESEM, EDXA. The reflection loss (R. L.) of the sample was calculated based on the measured complex permittivity and permeability. The advanced ARMC material with thickness t = 1.5 mm showed a minimum R. L. of -35.5 Db at 14.0 GHz with a response band width of 1.8 GHz. Thus, the developed advanced ARMC material acts as a good EMI wave absorber. For the first time in the world advanced multi layered Red Mud and MWCNTs (ARMC) based EMI shielding material has been developed at CSIR-AMPRI, Bhopal. Red mud provides oxides of titanium and iron as precursor and the MWCNTs provides electrical conductivity characteristics necessary for making desired EMI shielding materials. The novel process involves unique designing of chemical compositions and mineralogical phases of red mud, MWCNTs together with appropriate additive and solvent which results in the simultaneous and synergistic chemical reactions among various constituents thereby forming tailored precursor powder. Further, the ceramic processing of tailored precursor powder in appropriate environment enables formation of advanced ARMC shielding material having a variety of ceramic phases with multi elemental compositions and multi layered crystal structures. The synthesized material was characterized by various techniques namely XRD, PL, FESEM, EDXA. The reflection loss (R. L.) of the sample was calculated based on the measured complex permittivity and permeability. The advanced ARMC material with thickness t = 1.5 mm showed a minimum R. L. of -35.5 Db at 14.0 GHz with a response band width of 1.8 GHz. Thus, the developed advanced ARMC material acts as a good EMI wave absorber.
作者 Sarika Verma Sudhir Sitaram Amritphale Satyabrata Das Sarika Verma;Sudhir Sitaram Amritphale;Satyabrata Das(Council of Scientific and Industrial Research-Advanced Materials and Processes Research Institute, Bhopal, India)
出处 《Materials Sciences and Applications》 2016年第4期192-201,共10页 材料科学与应用期刊(英文)
关键词 Red Mud MWCNTS EMI Shielding Ceramic Processing Multilayered Structure Red Mud MWCNTs EMI Shielding Ceramic Processing Multilayered Structure
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部