期刊文献+

Outstanding Impact Resistance of Post-Consumer HDPE/Multilayer Packaging Composites 被引量:1

Outstanding Impact Resistance of Post-Consumer HDPE/Multilayer Packaging Composites
下载PDF
导出
摘要 New recycling alternative for multilayer films was successfully presented. Food packaging formed from different materials is difficult to recycle. The use of aluminum, glass, paper, paints, varnishes, and other materials in the rolling processes from plastic packaging is intended to optimize the efficiency of packaging. Nevertheless, these materials prevent the recycling of packaging because they become contaminants to the recycling process. Food multilayered packaging containing poly (ethylene terephthalate) PET, poly (ethylene) PE and aluminum was used as filler in the preparation of composites with post-consumer high density polyethylene matrix. Composites containing up to 50 wt% of filler were feasible to prepare, allowing the obtention of a material with varied mechanical and thermal properties. This feature allows the preparation of composites suitable for specific application. The addition of multilayer matter in the polyethylene matrix provided a material with excellent mechanical properties such as higher tensile impact strength (148 J/m) and elasticity (350 MPa) as compared to pure polyethylene (40 J/m and 450 MPa). New recycling alternative for multilayer films was successfully presented. Food packaging formed from different materials is difficult to recycle. The use of aluminum, glass, paper, paints, varnishes, and other materials in the rolling processes from plastic packaging is intended to optimize the efficiency of packaging. Nevertheless, these materials prevent the recycling of packaging because they become contaminants to the recycling process. Food multilayered packaging containing poly (ethylene terephthalate) PET, poly (ethylene) PE and aluminum was used as filler in the preparation of composites with post-consumer high density polyethylene matrix. Composites containing up to 50 wt% of filler were feasible to prepare, allowing the obtention of a material with varied mechanical and thermal properties. This feature allows the preparation of composites suitable for specific application. The addition of multilayer matter in the polyethylene matrix provided a material with excellent mechanical properties such as higher tensile impact strength (148 J/m) and elasticity (350 MPa) as compared to pure polyethylene (40 J/m and 450 MPa).
出处 《Materials Sciences and Applications》 2017年第1期15-25,共11页 材料科学与应用期刊(英文)
关键词 MULTILAYER PACKAGING Polymer-Matrix COMPOSITES Recycling Mechanical Properties Multilayer Packaging Polymer-Matrix Composites Recycling Mechanical Properties
  • 相关文献

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部