期刊文献+

CVD Treatment of Carbon Fibers and Evaluation of Their Dispersion in CFRC

CVD Treatment of Carbon Fibers and Evaluation of Their Dispersion in CFRC
下载PDF
导出
摘要 Carbon-fiber-reinforced cement-based (CFRC) composites is a promising functional material which can be used both in the military and civil fields against electromagnetic interference. However, it is essential to make carbon fibers dispersed uniformly during the preparation of CFRC. In this work, short carbon fibers were treated through Chemical Vapor Deposition (CVD) process at high temperature between 900°C and 1200°C under the protection of diluted nitrogen gas N2 to modify the surface of carbon fibers to further strengthen the bonding between carbon fibers and cement matrix. Natural gas (98% CH4) was used as a precursor. It was decomposed to produce an uneven layer of pyrocarbon that was deposited on the surface of carbon fibers. CVD-treated carbon fibers were pre-dispersed by using ultrasonic wave. Both hydroxyethyl cellulose (HEC) and silicon fume were used as dispersants and as admixtures. They helped CVD-treated carbon fibers distribute uniformly. The mass fraction of HEC was around 1.78% in the aqueous solution. Four methods, namely, the simulation experiment (SE) method, the scanning electron microscopy (SEM) method, the fresh mixture (FM) method, and the electrical resistivity measurement (ERM) method were, respectively, applied to evaluate fiber dispersion degree. Each method indicated its own advantages and disadvantages and it therefore catered for different conditions. Of the four evaluation methods, the SE method was the most convenient way to determine the pre-dispersion state prior to the preparation of CFRC composites. This method was helpful for predicting the subsequent dispersion state of carbon fibers in the cement matrix because it economized a large quantity of raw materials and time. Carbon-fiber-reinforced cement-based (CFRC) composites is a promising functional material which can be used both in the military and civil fields against electromagnetic interference. However, it is essential to make carbon fibers dispersed uniformly during the preparation of CFRC. In this work, short carbon fibers were treated through Chemical Vapor Deposition (CVD) process at high temperature between 900°C and 1200°C under the protection of diluted nitrogen gas N2 to modify the surface of carbon fibers to further strengthen the bonding between carbon fibers and cement matrix. Natural gas (98% CH4) was used as a precursor. It was decomposed to produce an uneven layer of pyrocarbon that was deposited on the surface of carbon fibers. CVD-treated carbon fibers were pre-dispersed by using ultrasonic wave. Both hydroxyethyl cellulose (HEC) and silicon fume were used as dispersants and as admixtures. They helped CVD-treated carbon fibers distribute uniformly. The mass fraction of HEC was around 1.78% in the aqueous solution. Four methods, namely, the simulation experiment (SE) method, the scanning electron microscopy (SEM) method, the fresh mixture (FM) method, and the electrical resistivity measurement (ERM) method were, respectively, applied to evaluate fiber dispersion degree. Each method indicated its own advantages and disadvantages and it therefore catered for different conditions. Of the four evaluation methods, the SE method was the most convenient way to determine the pre-dispersion state prior to the preparation of CFRC composites. This method was helpful for predicting the subsequent dispersion state of carbon fibers in the cement matrix because it economized a large quantity of raw materials and time.
出处 《Materials Sciences and Applications》 2017年第8期649-661,共13页 材料科学与应用期刊(英文)
关键词 Carbon Fiber Chemical Vapor DEPOSITION Hydroxyethyl CELLULOSE DISPERSION Carbon Fiber Chemical Vapor Deposition Hydroxyethyl Cellulose Dispersion
  • 相关文献

参考文献1

二级参考文献2

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部