期刊文献+

Structural Analysis of Magnesium-Aluminium Hydrotalcites Modified with Iron III Obtained by Hydroxide Precipitation Method

Structural Analysis of Magnesium-Aluminium Hydrotalcites Modified with Iron III Obtained by Hydroxide Precipitation Method
下载PDF
导出
摘要 Hydrotalcite-type anionic clays are a group of important materials used in adsorption processes, mainly for organic pollutants removal due the layered double hydroxide structure. The layer-interlayer interactions provide a structural memory even after dehydration and dehydroxylation process, since a very stable interlayer anions are part of material composition, like the carbonate one. A limited numbers of trivalent modifier cations can replace the aluminium cation due the ionic radii mismatch or oxidation state restrictions. Transition metal cations can replace the aluminium one in octahedral site of hydroxide lamellas in order to improve the adsorptive behaviors. In this work, we have investigate three compositions of carbonated magnesium-aluminium hydrotalcite with dif-ferent iron (III) contents through the co-precipitation method at pH 11 and aging step at 60°C for 6 hours. Thermal analysis was performed aiming the determination of the hydration water and hydroxyl amounts in dried precipitate samples, taking in account the results obtained for X-ray diffractometry, infrared spectroscopy, and nitrogen adsorption-desorption characterization for several thermally treated samples. All of synthesized samples showed high surface areas, even for high temperature of thermal treatment. The co-substitution with iron (III) reduced the temperature of dehydration and dehydroxylation process, but the co-substitution at 5 mol% provides other desirables characteristics, like a more amount of rhombohedral HDL phase and higher porosity, even after the thermal treatment at 500°C for 4 hours. This result makes that composition very applicable as a reusable adsorbent material in order to removal several types of micro-pollutant compounds in aqueous media. Hydrotalcite-type anionic clays are a group of important materials used in adsorption processes, mainly for organic pollutants removal due the layered double hydroxide structure. The layer-interlayer interactions provide a structural memory even after dehydration and dehydroxylation process, since a very stable interlayer anions are part of material composition, like the carbonate one. A limited numbers of trivalent modifier cations can replace the aluminium cation due the ionic radii mismatch or oxidation state restrictions. Transition metal cations can replace the aluminium one in octahedral site of hydroxide lamellas in order to improve the adsorptive behaviors. In this work, we have investigate three compositions of carbonated magnesium-aluminium hydrotalcite with dif-ferent iron (III) contents through the co-precipitation method at pH 11 and aging step at 60°C for 6 hours. Thermal analysis was performed aiming the determination of the hydration water and hydroxyl amounts in dried precipitate samples, taking in account the results obtained for X-ray diffractometry, infrared spectroscopy, and nitrogen adsorption-desorption characterization for several thermally treated samples. All of synthesized samples showed high surface areas, even for high temperature of thermal treatment. The co-substitution with iron (III) reduced the temperature of dehydration and dehydroxylation process, but the co-substitution at 5 mol% provides other desirables characteristics, like a more amount of rhombohedral HDL phase and higher porosity, even after the thermal treatment at 500°C for 4 hours. This result makes that composition very applicable as a reusable adsorbent material in order to removal several types of micro-pollutant compounds in aqueous media.
出处 《Materials Sciences and Applications》 2017年第11期784-797,共14页 材料科学与应用期刊(英文)
关键词 HYDROTALCITE LAYERED Double HYDROXIDE HYDROXIDE Precipitation IRON (III) Hydrotalcite Layered Double Hydroxide Hydroxide Precipitation Iron (III)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部