期刊文献+

Visualizing the Effect of Extrusion Velocity on the Spatial Variation of Porosity in a Titanium Dioxide/Binder System

Visualizing the Effect of Extrusion Velocity on the Spatial Variation of Porosity in a Titanium Dioxide/Binder System
下载PDF
导出
摘要 Extrusion is a common process technique used to fabricate porous materials such as catalysts and membranes. The performance and efficiency of such materials are governed by porosity and pore distribution. The spatial variation of porosity within the catalyst structure can be linked to process variables in the extrusion processes such as extrusion velocity. A change in extrusion velocity can lead to a change in extrusion pressure. The extrusion pressure effect is a combination of die entry deformation and frictional die land shear. In this work, the effect of extrusion velocity on the spatial variation of porosity in a titania-binder extrudate has been studied. Capillary rheometer analysis was done to investigate the effect of extrusion velocity. A segmentation approach was developed to study the spatial variation of porosity at the die wall (sheared region) compared to the unsheared (center) region of the extrudate. The results show that the extrusion pressure effect increases as the velocity increases. The extrusion conditions affect the spatial variation of porosity. Extrusion is a common process technique used to fabricate porous materials such as catalysts and membranes. The performance and efficiency of such materials are governed by porosity and pore distribution. The spatial variation of porosity within the catalyst structure can be linked to process variables in the extrusion processes such as extrusion velocity. A change in extrusion velocity can lead to a change in extrusion pressure. The extrusion pressure effect is a combination of die entry deformation and frictional die land shear. In this work, the effect of extrusion velocity on the spatial variation of porosity in a titania-binder extrudate has been studied. Capillary rheometer analysis was done to investigate the effect of extrusion velocity. A segmentation approach was developed to study the spatial variation of porosity at the die wall (sheared region) compared to the unsheared (center) region of the extrudate. The results show that the extrusion pressure effect increases as the velocity increases. The extrusion conditions affect the spatial variation of porosity.
出处 《Materials Sciences and Applications》 2017年第13期933-947,共15页 材料科学与应用期刊(英文)
关键词 POROSITY Distribution EXTRUSION VELOCITY Image Analysis CATALYST SUPPORT Porosity Distribution Extrusion Velocity Image Analysis Catalyst Support
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部