摘要
Waste laptop batteries (Type-Lithium ion) have been collected and manually dismantled in the current work. Active electrode materials were scraped off from the copper current collector and polyethylene separators. The aluminum current collectors were found to be severely damaged and attached with the electrode material. It was treated with NaOH later to be recovered as Al2O3. The leaching of LiCoO2 was done by 3 M HCl aided by 5% H2O2 at 60°C from the scraped active electrode materials (LiCoO2 and graphite) leaving the graphite completely. Co was precipitated as hydroxide by the addition of NaOH and later converted to Co3O4. The remaining solution was treated with saturated Na2CO3 to acquire Li2CO3 as crystalline precipitate with high purity. The recovery of Co and Li was 99% and 30%, respectively. Co3O4 and Li2CO3were mixed in stoichiometric proportions and calcined around 950°C with air supply to achieve LiCoO2 successfully.
Waste laptop batteries (Type-Lithium ion) have been collected and manually dismantled in the current work. Active electrode materials were scraped off from the copper current collector and polyethylene separators. The aluminum current collectors were found to be severely damaged and attached with the electrode material. It was treated with NaOH later to be recovered as Al2O3. The leaching of LiCoO2 was done by 3 M HCl aided by 5% H2O2 at 60°C from the scraped active electrode materials (LiCoO2 and graphite) leaving the graphite completely. Co was precipitated as hydroxide by the addition of NaOH and later converted to Co3O4. The remaining solution was treated with saturated Na2CO3 to acquire Li2CO3 as crystalline precipitate with high purity. The recovery of Co and Li was 99% and 30%, respectively. Co3O4 and Li2CO3were mixed in stoichiometric proportions and calcined around 950°C with air supply to achieve LiCoO2 successfully.