摘要
The goal of this study was to compare the predicted void content with the actual void content of pervious concrete cylinders. All pervious concrete systems are designed with a void content in mind to facilitate a specific permeability;however, due to variable placing techniques and inherent issues with the material, the actual in place void content often varies from designed. This study quantifies this difference and attempts to develop a correction factor, such that design values are more approximate to in place pervious concrete systems. The analysis included multiple mixtures with three design void contents (15%, 25%, 35%), two aggregate types (angular and rounded), and three different water-to-cement ratios (0.33, 0.37, 0.41). These samples were methodically designed to contain a desired void ratio, then casted in the laboratory, in which the compaction of each sample was controlled for consistency. Following casting, the in-place void content was determined using ASTM C1754 and compared to the predicted. The difference was then averaged to create a correction factor requiring more or less cement paste, which was used to redesign the mixtures. The new mixtures were then compared to the predicted void content. The results of this study show that initial designs can vary from 3% - 15% on average from initial designed void content and that a correction factor can be used to obtain within 3% on average of the target void ratios.
The goal of this study was to compare the predicted void content with the actual void content of pervious concrete cylinders. All pervious concrete systems are designed with a void content in mind to facilitate a specific permeability;however, due to variable placing techniques and inherent issues with the material, the actual in place void content often varies from designed. This study quantifies this difference and attempts to develop a correction factor, such that design values are more approximate to in place pervious concrete systems. The analysis included multiple mixtures with three design void contents (15%, 25%, 35%), two aggregate types (angular and rounded), and three different water-to-cement ratios (0.33, 0.37, 0.41). These samples were methodically designed to contain a desired void ratio, then casted in the laboratory, in which the compaction of each sample was controlled for consistency. Following casting, the in-place void content was determined using ASTM C1754 and compared to the predicted. The difference was then averaged to create a correction factor requiring more or less cement paste, which was used to redesign the mixtures. The new mixtures were then compared to the predicted void content. The results of this study show that initial designs can vary from 3% - 15% on average from initial designed void content and that a correction factor can be used to obtain within 3% on average of the target void ratios.