期刊文献+

Ion Radiation Detection Using Implanted Ultrahigh Molecular Weight Polyethylene Structures (UHMWPE)

Ion Radiation Detection Using Implanted Ultrahigh Molecular Weight Polyethylene Structures (UHMWPE)
下载PDF
导出
摘要 The effect of ion implantation, including Ar+ ion with influences (1 × 1013 - 1015 ions/cm2), on the electrical and optical properties of ultrahigh molecular weight polyethylene (UHMWPE) were investigated with particular emphasis placed on the sensor performance to be used in the field of radiation detection. The obtained results focusing on the effect of the different influences showed a significant change in the electrical conductivity, capacitance and loss tangent. The absorption spectra for UHMWPE samples were recorded and the values of the allowed direct and indirect optical energy gap (Eopt)d, (Eopt)in of UHMWPE and energies of the localized states for the virgin and implanted samples were calculated. We found that the optical energy gap values decreased as the radiation dose increased. The results can be explained on the basis of the ion beam radiation-induced damage in the linear chains of UHMWPE, with cross-linking generated after implantation. The observed changes in both the optical and the electrical properties suggest that the UHMWPE film may be considered as an effective material to achieve ion-radiation detection at room temperature. The effect of ion implantation, including Ar+ ion with influences (1 × 1013 - 1015 ions/cm2), on the electrical and optical properties of ultrahigh molecular weight polyethylene (UHMWPE) were investigated with particular emphasis placed on the sensor performance to be used in the field of radiation detection. The obtained results focusing on the effect of the different influences showed a significant change in the electrical conductivity, capacitance and loss tangent. The absorption spectra for UHMWPE samples were recorded and the values of the allowed direct and indirect optical energy gap (Eopt)d, (Eopt)in of UHMWPE and energies of the localized states for the virgin and implanted samples were calculated. We found that the optical energy gap values decreased as the radiation dose increased. The results can be explained on the basis of the ion beam radiation-induced damage in the linear chains of UHMWPE, with cross-linking generated after implantation. The observed changes in both the optical and the electrical properties suggest that the UHMWPE film may be considered as an effective material to achieve ion-radiation detection at room temperature.
机构地区 Mathematic
出处 《Materials Sciences and Applications》 2019年第1期12-24,共13页 材料科学与应用期刊(英文)
关键词 Ultrahigh Molecular Weight POLYETHYLENE ION Beam IRRADIATION UV-VIS Spectroscopy ION Detection Optical Band Gap Dielectric Constant Ultrahigh Molecular Weight Polyethylene Ion Beam Irradiation UV-Vis Spectroscopy Ion Detection Optical Band Gap Dielectric Constant
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部