摘要
Mouthguards can reduce the risk of sports-related injuries, but the sheet material and thickness have a large effect on their efficacy and safety. This study was intended to predict the changes in thickness of molded products by clarifying the effect of the time interval between repeat moldings during the continuous use of a vacuum-forming machine. Ethylene vinyl acetate mouthguard sheets were used for thermoforming with a vacuum-forming machine. The working model was trimmed to a height of 23 mm at the maxillary central incisor and 20 mm at maxillary first molar. Five molding conditions were investigated: 1) molding was carried out after the sag at the center of the softened sheet was 15 mm (control);2) sheet heating was started 5 min after the molding of the control (AF5-Re1);3) sheet heating started 5 min after the molding of AF5-Re1 (AF5-Re2);4) sheet heating started 10 min after the molding of the control (AF10-Re1);and 5) sheet heating started 10 min after the molding of AF10-Re1 (AF10-Re2). Sheet thickness after fabrication was determined for the incisal edge, labial surface, cusp, and buccal surface using a special caliper accurate to 0.1 mm. Thickness differences of the molding conditions were analyzed by two-way analysis of variance. Significant differences between the control and AF5-Re1 were observed at all measurement points (p < 0.01), but not between the control and AF10-Re1. AF10-Re2 became thinner than AF10-Re1 (p < 0.01). Reproducible molding results were obtained by waiting 10 min between the first and second moldings, but the third molded mouthguard was significantly thinner, despite this 10 min wait interval.
Mouthguards can reduce the risk of sports-related injuries, but the sheet material and thickness have a large effect on their efficacy and safety. This study was intended to predict the changes in thickness of molded products by clarifying the effect of the time interval between repeat moldings during the continuous use of a vacuum-forming machine. Ethylene vinyl acetate mouthguard sheets were used for thermoforming with a vacuum-forming machine. The working model was trimmed to a height of 23 mm at the maxillary central incisor and 20 mm at maxillary first molar. Five molding conditions were investigated: 1) molding was carried out after the sag at the center of the softened sheet was 15 mm (control);2) sheet heating was started 5 min after the molding of the control (AF5-Re1);3) sheet heating started 5 min after the molding of AF5-Re1 (AF5-Re2);4) sheet heating started 10 min after the molding of the control (AF10-Re1);and 5) sheet heating started 10 min after the molding of AF10-Re1 (AF10-Re2). Sheet thickness after fabrication was determined for the incisal edge, labial surface, cusp, and buccal surface using a special caliper accurate to 0.1 mm. Thickness differences of the molding conditions were analyzed by two-way analysis of variance. Significant differences between the control and AF5-Re1 were observed at all measurement points (p < 0.01), but not between the control and AF10-Re1. AF10-Re2 became thinner than AF10-Re1 (p < 0.01). Reproducible molding results were obtained by waiting 10 min between the first and second moldings, but the third molded mouthguard was significantly thinner, despite this 10 min wait interval.