期刊文献+

Experimental Evaluation of Ductile Fracture of Sheet Metals under Plane Stress States

Experimental Evaluation of Ductile Fracture of Sheet Metals under Plane Stress States
下载PDF
导出
摘要 With the application of lightweight materials such as advanced high-strength steel and aluminum alloy in the automotive industry, it is necessary to quantitatively evaluate the ultimate deformation capacity of materials under various plane stress states for the digital simulation of these materials. Conventional Nakajima test can only provide three regular plane stress states, such as tension, plane strain tension and bulging, and FLC curve is affected by deformation path, mold lubrication and other variables. More importantly, Nakajima test cannot provide shear, tension shear, which are extremely important loading conditions in automobile collisions. Therefore, the research work of this paper focuses on the evaluation of the ultimate ductile fracture behavior of sheet metals under various conditions of plane stress states. The four variables Mohr-Coulomb model was established to study the ductile fracture of metal sheets under plane stress states. Beginning with the recorded minor and major strain distributing on the deformation area of uniaxial tension samples, Moving Regression Algorithm was deployed to reveal the inherent relationship among the key parameters involved in the M-C model, which also provided an experimental technique for monitoring the instantaneous changing of triaxiality over the whole loading period. Three or four typical types of uniaxial-loading specimens were well designed to determine the M-C curve. As a result, M-C curve and the transformed major stain vs. minor strain curve provide further information about the material arrest to the ductile fracture in the area of shear loading, in comparison with the conventional FLD test. With the application of lightweight materials such as advanced high-strength steel and aluminum alloy in the automotive industry, it is necessary to quantitatively evaluate the ultimate deformation capacity of materials under various plane stress states for the digital simulation of these materials. Conventional Nakajima test can only provide three regular plane stress states, such as tension, plane strain tension and bulging, and FLC curve is affected by deformation path, mold lubrication and other variables. More importantly, Nakajima test cannot provide shear, tension shear, which are extremely important loading conditions in automobile collisions. Therefore, the research work of this paper focuses on the evaluation of the ultimate ductile fracture behavior of sheet metals under various conditions of plane stress states. The four variables Mohr-Coulomb model was established to study the ductile fracture of metal sheets under plane stress states. Beginning with the recorded minor and major strain distributing on the deformation area of uniaxial tension samples, Moving Regression Algorithm was deployed to reveal the inherent relationship among the key parameters involved in the M-C model, which also provided an experimental technique for monitoring the instantaneous changing of triaxiality over the whole loading period. Three or four typical types of uniaxial-loading specimens were well designed to determine the M-C curve. As a result, M-C curve and the transformed major stain vs. minor strain curve provide further information about the material arrest to the ductile fracture in the area of shear loading, in comparison with the conventional FLD test.
作者 Jian Fang Bin Wang Jianwei Zhang Xin Yang Jian Fang;Bin Wang;Jianwei Zhang;Xin Yang(Central Research Institute, Baoshan Iron & Steel Co., Ltd., Shanghai, China;Lishi Instruments (Shanghai) Co., Ltd., Shanghai, China;DOM 3D Ltd., Shanghai, China)
出处 《Materials Sciences and Applications》 2022年第6期417-432,共16页 材料科学与应用期刊(英文)
关键词 Digital Image Correlation (DIC) Plane Stress State Stress Triaxiality Ductile Fracture Digital Image Correlation (DIC) Plane Stress State Stress Triaxiality Ductile Fracture
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部