摘要
Fiber Reinforced Thermoplastic (FRTP) composites are emerging as potential materials in many engineering fields. In this research, the compression-molding process was used as the fabrication technique for producing talc-filled reinforced polyester composite. The weight percentage of these composites was varied, like 30 wt%, 40 wt%, 45 wt%, and 50 wt% talc, respectively. Besides, different percentages of styrene monomer, such as 0 wt%, 20 wt%, and 30 wt%, were also used in this study. Different types of physical, chemical, mechanical, and thermal properties were investigated. The water absorption percentage is increased for composites having a higher percentage of talc filler, while the elasticity of the composites shows a decreasing nature with the increase of talc content. Compressive strength is increased with higher talc content. After a certain limit, with the increase of talc content, it decreases and remains more or less constant. The flexural properties (flexural strength, tangent modulus, and flexural strain) of polyester-talc composites are higher initially, and as the percentage of talc increases, the flexural properties decrease or remain constant. The rate of water absorption is very low with the increase in soaking time. The thermal analysis of polyester-talc composites shows that the thermal stability of the composites is better than that of polyester.
Fiber Reinforced Thermoplastic (FRTP) composites are emerging as potential materials in many engineering fields. In this research, the compression-molding process was used as the fabrication technique for producing talc-filled reinforced polyester composite. The weight percentage of these composites was varied, like 30 wt%, 40 wt%, 45 wt%, and 50 wt% talc, respectively. Besides, different percentages of styrene monomer, such as 0 wt%, 20 wt%, and 30 wt%, were also used in this study. Different types of physical, chemical, mechanical, and thermal properties were investigated. The water absorption percentage is increased for composites having a higher percentage of talc filler, while the elasticity of the composites shows a decreasing nature with the increase of talc content. Compressive strength is increased with higher talc content. After a certain limit, with the increase of talc content, it decreases and remains more or less constant. The flexural properties (flexural strength, tangent modulus, and flexural strain) of polyester-talc composites are higher initially, and as the percentage of talc increases, the flexural properties decrease or remain constant. The rate of water absorption is very low with the increase in soaking time. The thermal analysis of polyester-talc composites shows that the thermal stability of the composites is better than that of polyester.
作者
Sharmina Yeasmin
Suraya Sabrin Soshi
Md. Abdul Gafur
Mansurul Murad
Shams Tania Afroza Islam
Sharmina Yeasmin;Suraya Sabrin Soshi;Md. Abdul Gafur;Mansurul Murad;Shams Tania Afroza Islam(Department of Applied Chemistry & Chemical Engineering, University of Dhaka, Dhaka, Bangladesh;Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh;Pilot Plant and Process Development Centre, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bamngladesh;Renata Limited, Dhaka, Bangladesh)