摘要
The structural, electronic and optical properties of rocksalt CdO have been studied using the plane-wave-based pseudo-potential density functional theory within generalized gradient approximation. The calculated lattice parameters are in agreement with previous experimental work. The band structure, density of states, and Mulliken charge population are obtained, which indicates that rocksalt CdO having the properties of a halfmetal due to an indirect band gap of -0.51eV. The mechanical properties show that rocksalt CdO is mechanically stable, isotropic and malleable. Significantly, we propose a correct value for ε1(0) of about 4.75, which offers theoretical data for the design and application for rocksalt CdO in optoelectronic materials.
The structural, electronic and optical properties of rocksalt CdO have been studied using the plane-wave-based pseudo-potential density functional theory within generalized gradient approximation. The calculated lattice parameters are in agreement with previous experimental work. The band structure, density of states, and Mulliken charge population are obtained, which indicates that rocksalt CdO having the properties of a halfmetal due to an indirect band gap of -0.51eV. The mechanical properties show that rocksalt CdO is mechanically stable, isotropic and malleable. Significantly, we propose a correct value for ε1(0) of about 4.75, which offers theoretical data for the design and application for rocksalt CdO in optoelectronic materials.