摘要
The microstructural kinetics of <i>β</i> grain growth in the <i>β</i> field of a Ti-6Al-4V alloy was studied by a series of controlled heat treatments at constant temperature rates. Heating rates of 5<span style="white-space:nowrap;">°</span>C/s, 50<span style="white-space:nowrap;">°</span>C/s and 500<span style="white-space:nowrap;">°</span>C/s were considered, stopping at different peak temperatures. The thickness evolution of martensitic needles and lamellar <i>α</i> laths, formed on cooling, was also investigated, by soaking the material above its <i>β</i>-transus temperature and cooling down at 5<span style="white-space:nowrap;">°</span>C/s, 50<span style="white-space:nowrap;">°</span>C/s, 100<span style="white-space:nowrap;">°</span>C/s and 300<span style="white-space:nowrap;">°</span>C/s till ambient temperature. Quantitative microstructural analyses were used to measure the particle dimensions. The <i>β</i> grain growth kinetics was reasonably well described by a modified Avrami equation. The thickness of <i>α</i> lamellae was a function of the cooling rate and the <i>β</i> grain dimension in which they nucleated. The martensite needle thickness was shown to be a function of the cooling rate to which the material was subjected.
The microstructural kinetics of <i>β</i> grain growth in the <i>β</i> field of a Ti-6Al-4V alloy was studied by a series of controlled heat treatments at constant temperature rates. Heating rates of 5<span style="white-space:nowrap;">°</span>C/s, 50<span style="white-space:nowrap;">°</span>C/s and 500<span style="white-space:nowrap;">°</span>C/s were considered, stopping at different peak temperatures. The thickness evolution of martensitic needles and lamellar <i>α</i> laths, formed on cooling, was also investigated, by soaking the material above its <i>β</i>-transus temperature and cooling down at 5<span style="white-space:nowrap;">°</span>C/s, 50<span style="white-space:nowrap;">°</span>C/s, 100<span style="white-space:nowrap;">°</span>C/s and 300<span style="white-space:nowrap;">°</span>C/s till ambient temperature. Quantitative microstructural analyses were used to measure the particle dimensions. The <i>β</i> grain growth kinetics was reasonably well described by a modified Avrami equation. The thickness of <i>α</i> lamellae was a function of the cooling rate and the <i>β</i> grain dimension in which they nucleated. The martensite needle thickness was shown to be a function of the cooling rate to which the material was subjected.