摘要
The SnO2 spheres-like nanoparticles have been successfully synthesized by a microwave solvothermal method, in which SnCl2·2H2O, poly(vinylpyrrolidone) PVP, H2O2 and NaOH as raw materials. The as-synthesized products have been characterized by X-ray diffraction, scanning electron microscope, and UV/Vis/NIR spectrophotometer. Photocatalytic activities of the samples have been evaluated by the degradation of rhodamine B (RhB) under UV-light illumination. Results showed that these products with diameter about 1 - 2 μm, and when the reaction time prolong, the surface of the SnO2 spheres will change to rough and then smooth when the time even longer. The product with nanorods on its surface shows the higher photocatalytic activity and red shift in the UV-vis absorption, which are relative to the unique structure. At last we studied the electron transfer reactions during photo-oxidation of RhB.
The SnO2 spheres-like nanoparticles have been successfully synthesized by a microwave solvothermal method, in which SnCl2·2H2O, poly(vinylpyrrolidone) PVP, H2O2 and NaOH as raw materials. The as-synthesized products have been characterized by X-ray diffraction, scanning electron microscope, and UV/Vis/NIR spectrophotometer. Photocatalytic activities of the samples have been evaluated by the degradation of rhodamine B (RhB) under UV-light illumination. Results showed that these products with diameter about 1 - 2 μm, and when the reaction time prolong, the surface of the SnO2 spheres will change to rough and then smooth when the time even longer. The product with nanorods on its surface shows the higher photocatalytic activity and red shift in the UV-vis absorption, which are relative to the unique structure. At last we studied the electron transfer reactions during photo-oxidation of RhB.