摘要
The aim of this work was to evaluate the catalytic properties for n-hexane isomerization of bifunctional monometallic (Ni or Pt) and bimetallic catalysts (Pt-Ni), using HMOR zeolite as support. The method used for metal dispersion in the zeolite was competitive ion exchange using ammine complexes [Ni(NH3)6]Cl2 and [Pt(NH3)4]Cl2 as precursors. The catalysts were characterized by X-Ray diffraction, X-Ray energy dispersion spectroscopy, temperature-programmed reduction and transmission electron microscopy. The n-hexane isomerization reaction using the catalysts was carried out to evaluate the catalyst activity. The reaction was carried out in a fixed bed reactor operating at 250?C, 1 atm, H2/C6 = 9 molar ratio. The profiles obtained from TPR suggest that, for bimetallic catalysts, the presence of platinum facilitates the reduction of Ni2+ cations. The bimetallic catalysts presented a higher activity in the isomerization of n-hexane when compared to the monometallic ones, as well better stability as the Pt content in the solid increases.
The aim of this work was to evaluate the catalytic properties for n-hexane isomerization of bifunctional monometallic (Ni or Pt) and bimetallic catalysts (Pt-Ni), using HMOR zeolite as support. The method used for metal dispersion in the zeolite was competitive ion exchange using ammine complexes [Ni(NH3)6]Cl2 and [Pt(NH3)4]Cl2 as precursors. The catalysts were characterized by X-Ray diffraction, X-Ray energy dispersion spectroscopy, temperature-programmed reduction and transmission electron microscopy. The n-hexane isomerization reaction using the catalysts was carried out to evaluate the catalyst activity. The reaction was carried out in a fixed bed reactor operating at 250?C, 1 atm, H2/C6 = 9 molar ratio. The profiles obtained from TPR suggest that, for bimetallic catalysts, the presence of platinum facilitates the reduction of Ni2+ cations. The bimetallic catalysts presented a higher activity in the isomerization of n-hexane when compared to the monometallic ones, as well better stability as the Pt content in the solid increases.
基金
the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico(CNPq.Brazil)and Petrobras for their financial support to this research.