期刊文献+

Kinetic and Mechanistic Study of Oxidation of Piperazines by Bromamine-T in Acidic Medium

Kinetic and Mechanistic Study of Oxidation of Piperazines by Bromamine-T in Acidic Medium
下载PDF
导出
摘要 Oxidations of piperazine, 1-methylpiperazine and 1-ethylpiperazine by bromamine-T (BAT) in buffered acidic medium have been kinetically studied at 303 K. The reaction shows a first-order dependence of the rate each on [BAT]0 and [piperazine]0, and an inverse fractional-order dependence on [H+]. The additions of halide ions and the reduction product of BAT, p-toluenesulfonamide, have no effect on the reaction rate. The variation of ionic strength of the solvent medium has no influence on the rate. Activation parameters have been evaluated from the Arrhenius and Eyring plots. A common mechanism consistent with the kinetic data has been proposed for all piperazines. The protonation constants of substrates have been evaluated. The Hammett linear free-energy relationship has been observed for the reaction with ρ = ?0.5 indicating that the electron-donating groups enhance the reaction rate by stabilizing the transition state. An isokinetic relationship observed shows β = 368 K indicating the dominance of enthalpy factors on the reaction rate. Oxidations of piperazine, 1-methylpiperazine and 1-ethylpiperazine by bromamine-T (BAT) in buffered acidic medium have been kinetically studied at 303 K. The reaction shows a first-order dependence of the rate each on [BAT]0 and [piperazine]0, and an inverse fractional-order dependence on [H+]. The additions of halide ions and the reduction product of BAT, p-toluenesulfonamide, have no effect on the reaction rate. The variation of ionic strength of the solvent medium has no influence on the rate. Activation parameters have been evaluated from the Arrhenius and Eyring plots. A common mechanism consistent with the kinetic data has been proposed for all piperazines. The protonation constants of substrates have been evaluated. The Hammett linear free-energy relationship has been observed for the reaction with ρ = ?0.5 indicating that the electron-donating groups enhance the reaction rate by stabilizing the transition state. An isokinetic relationship observed shows β = 368 K indicating the dominance of enthalpy factors on the reaction rate.
出处 《Modern Research in Catalysis》 2013年第4期157-163,共7页 催化剂现代研究(英文)
关键词 PIPERAZINES OXIDATION KINETICS MECHANISM Bromamine-T BUFFER Piperazines Oxidation Kinetics Mechanism Bromamine-T Buffer
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部