期刊文献+

Dielectric and Magnetic Properties of Nano-Structure BiFeO<SUB>3</SUB>Doped with Different Concentrations of Co Ions Prepared by Sol-Gel Method

Dielectric and Magnetic Properties of Nano-Structure BiFeO<SUB>3</SUB>Doped with Different Concentrations of Co Ions Prepared by Sol-Gel Method
下载PDF
导出
摘要 BiFe1-xCoxO3 (x = 0, 0.03, 0.05 and 0.1) symbolic as (BFO, BF3CO, BF5CO and BF10CO) in powder form has been prepared by sol-gel technique using ethylenediamine tetraacetic acid (EDTA) as a chelating agent. X-ray diffraction (XRD) and FTIR analysis showed rhombohedra distorted BiFeO3 structure with compressive lattice distortion induced by the Co substitution at Fe sites. The transmission electron microscope (TEM) shows irregular particles. The additive of cobalt oxide has led to grains refining giving the following crystallite sizes of 18 nm for BF5Co. The scanning electron microscope (SEM) study reveals that the samples morphology shows relatively uniform grain size distribution. The dielectric properties of BiFeO3 nano-particles in the frequency range of 1 up to 5 MHz at RT revealed that the A.C. conductivity of the prepared samples reaches its maximum value in BF5CO. By decreasing BiFeO3 particle size as a result of doping with different Co ion concentrations, an enhancement in magnetization and a simultaneous suppression in current leakage occurred. The remnant magnetization Mr of BiFe1-xCoxO3 (x = 0, 0.03, 0.05, 0.1) ceramics significantly enhanced, which provides potential applications in information storage. BiFe1-xCoxO3 (x = 0, 0.03, 0.05 and 0.1) symbolic as (BFO, BF3CO, BF5CO and BF10CO) in powder form has been prepared by sol-gel technique using ethylenediamine tetraacetic acid (EDTA) as a chelating agent. X-ray diffraction (XRD) and FTIR analysis showed rhombohedra distorted BiFeO3 structure with compressive lattice distortion induced by the Co substitution at Fe sites. The transmission electron microscope (TEM) shows irregular particles. The additive of cobalt oxide has led to grains refining giving the following crystallite sizes of 18 nm for BF5Co. The scanning electron microscope (SEM) study reveals that the samples morphology shows relatively uniform grain size distribution. The dielectric properties of BiFeO3 nano-particles in the frequency range of 1 up to 5 MHz at RT revealed that the A.C. conductivity of the prepared samples reaches its maximum value in BF5CO. By decreasing BiFeO3 particle size as a result of doping with different Co ion concentrations, an enhancement in magnetization and a simultaneous suppression in current leakage occurred. The remnant magnetization Mr of BiFe1-xCoxO3 (x = 0, 0.03, 0.05, 0.1) ceramics significantly enhanced, which provides potential applications in information storage.
出处 《New Journal of Glass and Ceramics》 2015年第3期59-73,共15页 玻璃与陶瓷期刊(英文)
关键词 NANO-STRUCTURE MULTIFERROIC BiFe1-xCoxO3 (x = 0 0.03 0.05 0.1) XRD FTIR TEM REMNANT Magnetization Nano-Structure Multiferroic BiFe1-xCoxO3 (x = 0 0.03 0.05 0.1) XRD FTIR TEM Remnant Magnetization
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部