期刊文献+

Morphological and Structural Investigations on Iron Borosilicate Glasses

Morphological and Structural Investigations on Iron Borosilicate Glasses
下载PDF
导出
摘要 Borosilicate glasses and glass ceramics in the system 30Na2O-2Al2O3-25SiO2-xFe2O3(43-x)B2O3 (x = 0 - 20 mol%) have been prepared and studied by distinguished techniques. X-ray diffraction (XRD), transmission electron microscope (TEM), electron diffraction pattern (EDP) and SEM experiments are applied to explore the induced structural changes. Nanometer-sized species of polycrystalline structure are formed particularly in low Fe2O3 containing glasses. The size of the crystallites is found to depend on Fe2O3 concentrations. It is ranged from 10 to 33 nanometers. Structurally, these materials are suggested to contain different components, crystalline component and an interfacial component which situated between the crystallized domains. Presence of these components affects the atomic arrangement without short- or long-range order. An intermediate range ordered structure is dominant in glass ceramics of Fe2O3 2O3 concentration, since more disordered structure of lower size is present. These structural changes are found to be connected with the role of Fe2O3 and Na2O in glasses. Na2O is the strong glass modifier in the studied composition region, while Fe2O3 is consumed also as a modifier in composition of 2O3 is mainly dominant in the composition region of higher iron oxide concentration (8 - 20 mol%). Borosilicate glasses and glass ceramics in the system 30Na2O-2Al2O3-25SiO2-xFe2O3(43-x)B2O3 (x = 0 - 20 mol%) have been prepared and studied by distinguished techniques. X-ray diffraction (XRD), transmission electron microscope (TEM), electron diffraction pattern (EDP) and SEM experiments are applied to explore the induced structural changes. Nanometer-sized species of polycrystalline structure are formed particularly in low Fe2O3 containing glasses. The size of the crystallites is found to depend on Fe2O3 concentrations. It is ranged from 10 to 33 nanometers. Structurally, these materials are suggested to contain different components, crystalline component and an interfacial component which situated between the crystallized domains. Presence of these components affects the atomic arrangement without short- or long-range order. An intermediate range ordered structure is dominant in glass ceramics of Fe2O3 2O3 concentration, since more disordered structure of lower size is present. These structural changes are found to be connected with the role of Fe2O3 and Na2O in glasses. Na2O is the strong glass modifier in the studied composition region, while Fe2O3 is consumed also as a modifier in composition of 2O3 is mainly dominant in the composition region of higher iron oxide concentration (8 - 20 mol%).
机构地区 Glass Research Group
出处 《New Journal of Glass and Ceramics》 2017年第2期13-21,共9页 玻璃与陶瓷期刊(英文)
关键词 BOROSILICATE MORPHOLOGY Glass ORDERED Structure CLUSTERS Borosilicate Morphology Glass Ordered Structure Clusters
  • 相关文献

参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部