期刊文献+

Continuous Damage Monitoring of a Thin Composite Structural with Mismatched Stiffener in a Combined Joint Using Fiber Bragg Grating under Tension and Three-Point Loading

Continuous Damage Monitoring of a Thin Composite Structural with Mismatched Stiffener in a Combined Joint Using Fiber Bragg Grating under Tension and Three-Point Loading
下载PDF
导出
摘要 A joint combining riveting and bonding is considered in terms of structural performance if the composite structure has a mismatched stiffener. The transfer loading is correlated with high performance aerospace joints to increase delamination resistance in the out-of-plane direction. However, combined joints (rivet/bonded) will create a bearing area that induces another potential damage source aside from secondary bending moment on the edge of the stiffener. Another problem is that the structure is difficult to be inspected by using conventional methods because of limited accessibility. The use of embedded fiber Bragg grating (FBG) technology in the structure as a strain sensor can potentially solve the problem in structures that have a stiffness mismatch. The FBG can be used to detect and characterize delamination before it reaches a critical stage. The model used to represent this problem is a thin composite stiffened skin under two load cases: tension and three-point bending. Finite element modeling using a traction versus separation theory is performed to determine the critical area on the specimen for placement of the FBG before manufacturing and testing. Experiments were presented to determine the distribution of load in a combined joint under both loading cases using ideal loads to create a secondary bending moment and bearing loads in the stiffness-mismatched structure. In this research, the FBG successfully detected and characterized the delamination caused in both loading cases. In addition, FBG can predict the delamination growth quantitatively. A spectrum graph of the FBG results can be used to replace the conventional mechanical graph in composite structural health monitoring in real applications. A joint combining riveting and bonding is considered in terms of structural performance if the composite structure has a mismatched stiffener. The transfer loading is correlated with high performance aerospace joints to increase delamination resistance in the out-of-plane direction. However, combined joints (rivet/bonded) will create a bearing area that induces another potential damage source aside from secondary bending moment on the edge of the stiffener. Another problem is that the structure is difficult to be inspected by using conventional methods because of limited accessibility. The use of embedded fiber Bragg grating (FBG) technology in the structure as a strain sensor can potentially solve the problem in structures that have a stiffness mismatch. The FBG can be used to detect and characterize delamination before it reaches a critical stage. The model used to represent this problem is a thin composite stiffened skin under two load cases: tension and three-point bending. Finite element modeling using a traction versus separation theory is performed to determine the critical area on the specimen for placement of the FBG before manufacturing and testing. Experiments were presented to determine the distribution of load in a combined joint under both loading cases using ideal loads to create a secondary bending moment and bearing loads in the stiffness-mismatched structure. In this research, the FBG successfully detected and characterized the delamination caused in both loading cases. In addition, FBG can predict the delamination growth quantitatively. A spectrum graph of the FBG results can be used to replace the conventional mechanical graph in composite structural health monitoring in real applications.
出处 《Open Journal of Composite Materials》 2013年第3期63-87,共25页 复合材料期刊(英文)
关键词 Carbon Fiber Joints/Joining COHESIVE Elements Secondary BENDING MOMENT STRUCTURAL Health Monitoring Carbon Fiber Joints/Joining Cohesive Elements Secondary Bending Moment Structural Health Monitoring
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部