期刊文献+

Transport Properties of Ni-Nb-Zr Glassy Alloys and Hydrogen Absorbed Alloys

Transport Properties of Ni-Nb-Zr Glassy Alloys and Hydrogen Absorbed Alloys
下载PDF
导出
摘要 The electrical transport properties of (Ni0.8Nb0.2)100-xZrx (x = 30, 40 and 50) amorphous ribbons and hydrogen charged specimens were investigated. The amorphous ribbons indicated a negative coefficient in the temperature dependence of their electrical resistivity as well as the typical transport properties of the amorphous alloys with comparatively high values of electrical resistivity, ρ. The normalized temperature coefficient of the resistivity (TCR ≡ 1/ρ300K·dρ/dT) tended to increase with increasing x in the temperature range of 100-300 K. These behaviors would suggest that the transport properties of the present amorphous ribbons were governed by temperature variation of the Debye-Waller factor, not by electron-phonon scattering. The hydrogen charged ribbons obtained by an electrochemical method also showed similar electrical resistivity behaviors as a function of the temperature. However, TCR of x = 40 with hydrogen charged ribbon, in which the amount of absorbed hydrogen was about 14 at%, increased about three times more than that of the pre-charged amorphous ribbon. The electrical transport properties of (Ni0.8Nb0.2)100-xZrx (x = 30, 40 and 50) amorphous ribbons and hydrogen charged specimens were investigated. The amorphous ribbons indicated a negative coefficient in the temperature dependence of their electrical resistivity as well as the typical transport properties of the amorphous alloys with comparatively high values of electrical resistivity, ρ. The normalized temperature coefficient of the resistivity (TCR ≡ 1/ρ300K·dρ/dT) tended to increase with increasing x in the temperature range of 100-300 K. These behaviors would suggest that the transport properties of the present amorphous ribbons were governed by temperature variation of the Debye-Waller factor, not by electron-phonon scattering. The hydrogen charged ribbons obtained by an electrochemical method also showed similar electrical resistivity behaviors as a function of the temperature. However, TCR of x = 40 with hydrogen charged ribbon, in which the amount of absorbed hydrogen was about 14 at%, increased about three times more than that of the pre-charged amorphous ribbon.
出处 《Open Journal of Metal》 2013年第3期45-49,共5页 金属学报(美国)
关键词 Electrical RESISTIVITY AMORPHOUS Alloy RIBBON HYDROGEN ABSORPTION Electrical Resistivity Amorphous Alloy Ribbon Hydrogen Absorption
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部