期刊文献+

Synthesis and Densification of Tungsten-Brass Composite by Mechanical Alloying

Synthesis and Densification of Tungsten-Brass Composite by Mechanical Alloying
下载PDF
导出
摘要 Fabrication of full-density W-brass composites is very difficult to achieve because of evaporation of zinc, insolubility of W and brass and compacts expansion. In this study, to achieve full-density W-brass composites, mechanical alloying (MA) and activated sintering process were utilized. Mechanical coating of W with Ni using high energy planetary ball mill was carried out. The milling was divided into two stages: to alloy and modify the surface of W with Ni for enhanced activation. The microstructure of the milled powders and sintered compacts, elemental composition and phases present were studied by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) respectively. As-received powder compacts was also sintered under the same condition for comparison purpose. The effects of milling time on the microstructure, sinterability and the hardness of the composites were investigated. It was observed that the samples produced from 8 h milled powder had the highest relative sintered density (98% TD) and microhardness (234 Hv). On the other hand, the samples from the as-received powders expanded and had a relative sintered density of (67% TD) and microhardness as low as 24 Hv. The significance of this study is the possibility of producing W-brass composites as a cheaper alternative to W-Cu composites. Fabrication of full-density W-brass composites is very difficult to achieve because of evaporation of zinc, insolubility of W and brass and compacts expansion. In this study, to achieve full-density W-brass composites, mechanical alloying (MA) and activated sintering process were utilized. Mechanical coating of W with Ni using high energy planetary ball mill was carried out. The milling was divided into two stages: to alloy and modify the surface of W with Ni for enhanced activation. The microstructure of the milled powders and sintered compacts, elemental composition and phases present were studied by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) respectively. As-received powder compacts was also sintered under the same condition for comparison purpose. The effects of milling time on the microstructure, sinterability and the hardness of the composites were investigated. It was observed that the samples produced from 8 h milled powder had the highest relative sintered density (98% TD) and microhardness (234 Hv). On the other hand, the samples from the as-received powders expanded and had a relative sintered density of (67% TD) and microhardness as low as 24 Hv. The significance of this study is the possibility of producing W-brass composites as a cheaper alternative to W-Cu composites.
出处 《Open Journal of Metal》 2015年第3期27-36,共10页 金属学报(美国)
关键词 W-Brass Mechanical ALLOYING Microstructure Expansion HARDNESS W-Brass Mechanical Alloying Microstructure Expansion Hardness
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部