期刊文献+

Investigating of the Microstructure and Mechanical Properties of Al-Based Composite Reinforced with Nano-Trioxide Tungsten via Accumulative Roll Bonding Process 被引量:1

Investigating of the Microstructure and Mechanical Properties of Al-Based Composite Reinforced with Nano-Trioxide Tungsten via Accumulative Roll Bonding Process
下载PDF
导出
摘要 In the present investigation, an Al/WO3p metal matrix nanocomposite was fabricated by accumulative roll bonding (ARB) technique. Microstructural evaluation and mechanical properties of specimens were studied by Field Emission-Scanning Electron Microscopy, X-ray Diffraction, microhardness and tensile test. Several factors that affect uniform distribution of reinforcing particles were investigated. At the initial stages of ARB process particle free zones as well as particle clusters were observed in the microstructure of the composite. After 12 ARB cycles, a nanocomposite with a uniform distribution of nanoparticles was produced. It was shown that the tensile strength of the ARBed composite enhanced with the increasing number of ARB cycles. After the first cycle, a significant increase was observed in the tensile strength of nanocomposite in 2.0 percent volume of WO3p, from 89 MPa to 128 MPa (almost 1.4 times increase in strength). After the final cycle, the tensile strength value increased to 205 MPa (that is almost 2.3 times increase in strength) due to the strain hardening and grain refinement. The X-ray diffraction results showed that Al/WO3p nanocomposite with the average crystallite size of 41 nm was successfully attained after 12 cycles of the ARB process. Finally, observations revealed that the fracture mode in Al/WO3p nanocomposite was of type shearing ductile fracture with elongated shallow dimples. In the present investigation, an Al/WO3p metal matrix nanocomposite was fabricated by accumulative roll bonding (ARB) technique. Microstructural evaluation and mechanical properties of specimens were studied by Field Emission-Scanning Electron Microscopy, X-ray Diffraction, microhardness and tensile test. Several factors that affect uniform distribution of reinforcing particles were investigated. At the initial stages of ARB process particle free zones as well as particle clusters were observed in the microstructure of the composite. After 12 ARB cycles, a nanocomposite with a uniform distribution of nanoparticles was produced. It was shown that the tensile strength of the ARBed composite enhanced with the increasing number of ARB cycles. After the first cycle, a significant increase was observed in the tensile strength of nanocomposite in 2.0 percent volume of WO3p, from 89 MPa to 128 MPa (almost 1.4 times increase in strength). After the final cycle, the tensile strength value increased to 205 MPa (that is almost 2.3 times increase in strength) due to the strain hardening and grain refinement. The X-ray diffraction results showed that Al/WO3p nanocomposite with the average crystallite size of 41 nm was successfully attained after 12 cycles of the ARB process. Finally, observations revealed that the fracture mode in Al/WO3p nanocomposite was of type shearing ductile fracture with elongated shallow dimples.
出处 《Open Journal of Metal》 2017年第1期9-23,共15页 金属学报(美国)
关键词 ACCUMULATIVE ROLL BONDING NANOCOMPOSITE Microstructure Mechanical Properties Accumulative Roll Bonding Nanocomposite Microstructure Mechanical Properties
  • 相关文献

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部