摘要
In the present work, the treatment of synthetic waters doped with iron (II) has been studied. The treatment mechanism used in this study is the biological oxidation which consists, in test tubes, of bringing bacteria isolated on Petri dishes into contact with water containing divalent iron (II). These de-ironing bacteria (non-specific bacteria) are used to carry out laboratory biological oxidation experiments on iron (II) under different pH conditions (pH = 3.4 - 3.6, pH = 7.3 - 7.5 and pH = 9.8 - 10) and variable concentration of iron (II). Biological treatment trials included different concentrations of iron during time intervals of a day. Examination of the elimination kinetics of Iron (II) indicates a removal rate of 59.453% for an initial iron concentration in the synthetic solution of 1 mg·L−1 at basic pH (pH = 9.8 - 10). Therefore, the degradation of divalent iron by this method seems to be quite effective, but it should be noted that biological nitrification is impaired by the presence of high iron concentrations above 5 mg·L−1.
In the present work, the treatment of synthetic waters doped with iron (II) has been studied. The treatment mechanism used in this study is the biological oxidation which consists, in test tubes, of bringing bacteria isolated on Petri dishes into contact with water containing divalent iron (II). These de-ironing bacteria (non-specific bacteria) are used to carry out laboratory biological oxidation experiments on iron (II) under different pH conditions (pH = 3.4 - 3.6, pH = 7.3 - 7.5 and pH = 9.8 - 10) and variable concentration of iron (II). Biological treatment trials included different concentrations of iron during time intervals of a day. Examination of the elimination kinetics of Iron (II) indicates a removal rate of 59.453% for an initial iron concentration in the synthetic solution of 1 mg·L−1 at basic pH (pH = 9.8 - 10). Therefore, the degradation of divalent iron by this method seems to be quite effective, but it should be noted that biological nitrification is impaired by the presence of high iron concentrations above 5 mg·L−1.