摘要
Electropolymerization and characterization of poly(3,4-ethylene dioxythiophene) (PEDOT) doped with functionalized single-walled carbon nanotubes (SWANTs) polyaminobenzene sulfonic acid (PABS) and different dopants were studied. It was fabricated by a simple oxidative electropolymerization method. The nanocomposite coatings have been prepared by using electrochemical methods from aqueous solutions, such that the components were deposited onto platinum electrode substrate. The morphology of composite films was analyzed by scanning electron microscopy (SEM). The electrochemical and physical properties of the resulting composites were evaluated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FT-IR) techniques in 0.1 M LiClO4 aqueous solutions. The value of specific electrochemical capacitance of the composite films is considerably higher than that of the pure polymers films. The improved properties of the electrodes were obtained by using these composite films. The dopant substances used were sodium dodecyl sulfate (SDS) and 1,2-Dihydroxy- benzene-3,5-disulfonic acid disodium salt hydrate (tiron).
Electropolymerization and characterization of poly(3,4-ethylene dioxythiophene) (PEDOT) doped with functionalized single-walled carbon nanotubes (SWANTs) polyaminobenzene sulfonic acid (PABS) and different dopants were studied. It was fabricated by a simple oxidative electropolymerization method. The nanocomposite coatings have been prepared by using electrochemical methods from aqueous solutions, such that the components were deposited onto platinum electrode substrate. The morphology of composite films was analyzed by scanning electron microscopy (SEM). The electrochemical and physical properties of the resulting composites were evaluated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FT-IR) techniques in 0.1 M LiClO4 aqueous solutions. The value of specific electrochemical capacitance of the composite films is considerably higher than that of the pure polymers films. The improved properties of the electrodes were obtained by using these composite films. The dopant substances used were sodium dodecyl sulfate (SDS) and 1,2-Dihydroxy- benzene-3,5-disulfonic acid disodium salt hydrate (tiron).